
Face model registration and
facial animation retargeting

Jung-Ju Choi

Ajou University

Introduction

• For a given source face
– Well-defined reference geometry and

animation

• And for a given target face
– Unorganized geometry and texture

– Scanned data

• Generate reasonable target face
– Deform the source model to the target

– Transfer the source animation to the target

Our approach

• Registration

– Find landmarks at the target model

– Apply thin-plate spline interpolation between
landmarks

– Texture synthesis

• Animation

– Training reference animation

– Animate the thin-plate spline interpolated model

Registration

• Finding landmark correspondence

• Model fitting

– Scattered data interpolation b.w.t. landmarks

Landmarks of source and target Model fitting(TPS)

Landmark correspondence

• General Iterative Closest Point algorithm

– For each landmark L at source face

• While threshold
– Grouping region for the landmark

» The region becomes smaller than the previous step

– Find rigid transformation and apply transformation

• Return the point in the target closest to L





N

i

iirot
1

2
)(),e(qtpt 

Energy function to find rigid transformation b.w.t. two point clouds.

pi : points of source model
qi : points of target model

PCL(Point Cloud Library)
- ICP algorithm

• Input
– source point cloud, initial guess

– target point cloud

• Iterate this process
– Gathering correspondences(vertex distance)

• pi and qi are assigned

– Get rigid transform from correspondences
• Minimize the energy function

– Transform source cloud

– Convergence check
• # of iterations, transformation difference, fitness score

So, we do …

• Define source model
landmarks

• Initial guess of rigid
transformation

• For each landmark at source

– Grouping region

– Use PCL-ICP algorithm
• Source cloud : grouped region

• Target cloud : all vertices

Grouping region for ICP

Initial guess

Thin-plate spline interpolation

iii pqd 

Displacement vector, pi : landmark of source model
qi : landmark of target model

 

  .1...'

,0...

.

00

00111

1

.........

10

1...0

1

331

1

21

2,1,

1,21,2

1,12,1

TT

K

T

T

K

K

T

KKK

T

k

T

k

uu

ddSW

S

uu

uu
uu

vWvv

ppp

p

p

p





































., jijiu pp 

.iiu pv 

v’ : new vertex position, v : arbitrary point in the source mesh

TPS result

Source and Target TPS and Target TPS and Target

Target

TPS

Texture synthesis

• Line-Plane intersection

– Each vertex in TPS model

• Position(vertex position)

• Line direction(vertex normal)

– Intersection test with target model

• Find intersection triangles
– Select a triangle with the minimum distance

– Get barycentric coordinates on the triangle

– Interpolate texture coordinates at the intersection

• If not intersected, it is not on face area

Texture map synthesis

Rendering on face area

Texture transferred model

Landmarks of source and target Model fitting Texture
transferred

Error of TPS model

• For vertices of face area

• Bounding size of models

• Avg. error : 0.029703

• n: 11904

.
1

1





n

i

ii qp
n

E

pi : vertex of TPS model in face area
qi : projection of pi on the nearest triangle of target model
n : number of vertices in face area

Width Height Depth

TPS model 6.378925 9.180843 6.630010

Target model 5.252716 5.831849 3.541810

Facial animation

• Define regions on a face (manually)

• For each region, compute MVC of internal
vertices

• Place some markers globally
– Ex) one marker for each region

• Compute transformation between boundary
and markers(needed animation data)

• Each frame,
– Marker  Boundary  Internal vertices

Transformation MVC

Face regions

Regions for MVC reconstruction

MVC on a region

• Compute MVCs of internal vertices for
each region

wi

Wi+1

Wi+2

Wi+3Wi+4

Wi+6

Wi+5

Internal vertex

Boundary vertex

Virtual vertex for 3D cage

Boundary and marker positions



















































































............

.........

.........

............

UMV 

MarkerBoundaryWeight

Marker training and computation
of boundary from marker

• Example sequences

.

,





UVA

UAV

Compute A from examples

V : # of boundary vertices x # of sequences
n x s known matrix

A : m x n unknown matrix

U: # of markers x # of sequences
m x s known matrix

.

,

' UAV

UAV



 We can get the pseudo inverse of A.

Then, boundary vertices can be computed
from marker position.

Retargeting process

Reference

Reference
Animation

data

Fitted
model

Landmarks
correspondences

Vertices:
interpolation
b.w.t. landmarksLinear marker training

and MVCs

Estimation
Animation

data

Target
(scan data)

Target fitted
animation data

Point cloud

Source
rest pose

Source animation
pose

Registration
model (rest pose)

Retargeting
Pose result

P’i=P’rest+ didi= Pi-Prest

Registration

Landmark

Result animation

