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Abstract

This paper presents a novel structure-preserving image decomposition operator called bilateral texture

filter. As a simple modification of the original bilateral filter [2], it performs local patch-based analysis

of texture features and incorporates its results into the range filter kernel. The central idea to ensure

proper texture/structure separation is based on patch shift that captures the texture information from

the most representative texture patch clear of prominent structure edges. Our method outperforms the

original bilateral filter in removing texture while preserving main image structures, at the cost of some

added computation. It inherits well-known advantages of the bilateral filter, such as simplicity, local

nature, ease of implementation, scalability, and adaptability to other application scenarios.
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1 Introduction

Structure-preserving filtering is an essential operation with a variety of applications in computational pho-

tography and image analysis. Such an operation decomposes an image into prominent structure and

fine-scale detail, making it easier for subsequent image manipulation such as tone mapping, detail en-

hancement, visual abstraction, scene understanding, and other tasks. Separating structure from detail often

depends on measuring the size of local contrast, where structure is identified as pixels having relatively

large contrast. However, when the fine-scale detail represents texture, the conventional way of image de-

composition may fail because texture often contains strong enough contrast to get confused with structure.

Many of the structure-preserving smoothing operators are based on local filtering [3, 2, 4, 5]. While

these nonlinear filters are simple and intuitive to use, they are often ill-equipped to extract structure from

texture due to having no explicit measure with which to distinguish the two. On the other hand, there are

optimization-based [6, 7, 8, 9, 10, 11, 12] and patch-based [13] solutions as well, some of which have been

specifically designed to handle texture and thus outperform local filtering in terms of texture removal.

However, they usually come with additional level of complexity and sophistication, which makes them

harder to implement, accelerate, scale, or adapt.

In this paper, we present a novel method for nonlinear image decomposition based on a simple mod-

ification to bilateral filter [2]. It is in essence a joint bilateral filter [14, 15] that incorporates texture

information (instead of color information) into the range filter kernel. We demonstrate that our method

effectively removes texture while preserving structure, which the standard bilateral filter often fails to do.

Being a simple extension to the popular bilateral filter, our method enjoys the benefits that come with it,

such as simplicity, speed, ease of implementation, scalability, and adaptability. To distinguish the proposed

method from its original formulation, we call it bilateral texture filter.

Our key idea to extract local texture without obscuring structure is patch shift, which for each pixel

captures the texture information from the patch in the neighborhood that excludes prominent structure

edges nearby and best represents the texture region containing the pixel. Patch shift in effect performs

structure-preserving soft image segmentation of texture regions. The result of this operation is then used

as the guidance image in our joint bilateral filtering. Therefore, the only additional step required over the

standard bilateral filter is the computation of guidance image via patch shift, which can be achieved at a

small computational cost.



2 Related Work

Bilateral filter [2] is one of the most widely used nonlinear operators for discontinuity-preserving image

smoothing and decomposition. Its simplicity, effectiveness, and extendability led to its broader usage in

other applications as well, such as tone mapping [16], detail enhancement [17, 4], image editing [18, 19],

image upsampling [20], mesh denoising [21, 22], and artistic rendering [23, 24].

Subsequent development of more sophisticated edge-preserving filters, including weighted least squares

(WLS) [8], edge-avoiding wavelets [25], local histogram filtering [26], local Laplacian filtering [5], do-

main transform [27], and L0 gradient minimization [11], all basically share the same goal of smoothing

fine-scale details without degrading image structures, although they are not explicitly designed to deal with

texture. Subr et al. [9], on the other hand, defined detail as oscillations between local extrema in order to

distinguish small-scale yet high-contrast features, i.e., texture, from real edges.

Regular or near-regular textures may be identified and filtered by exploiting spatial relationship, fre-

quency, and symmetry of texture features [28, 29]. Total variation (TV) [30] on the other hand has proven

to work well on filtering arbitrary texture of irregular shapes by enforcing TV regularization constraints to

preserve large-scale edges. The original formulation of TV regularization was further extended to achieve

better quality, robustness, and efficiency [6, 7, 10, 12]. In particular, Xu et al. [12] introduced the notion

of relative total variation (RTV), a spatially-varying total variation measure that helps improve the quality

of texture-structure separation.

Recently, Karacan et al. [13] proposed a patch-based texture removal algorithm that uses the similar-

ity measures based on a region covariance descriptor. Compared to the conventional pixel-based image

decomposition methods, the use of covariance matrix associated with each patch in the neighborhood en-

ables a more accurate description and identification of texture feature, leading to better performance in

separating texture from structure. On the other hand, a patch-based approach is also prone to overblur the

structure edges since the overlapping patches near an edge inevitably share similar statistics.

3 Patch Shift

Given a scalar-valued input image I , the bilateral filter [2] computes an output image J by

Jp =
1

kp

∑
q∈Ωp

f(||q − p||)g(||Iq − Ip||)Iq, (1)

where kp is a normalizing term. The output Jp at pixel p is a weighted average of Iq in the spatial

neighborhood Ωp. The spatial kernel f and the range kernel g are typically Gaussian functions. The

data-dependent weight g is inversely proportional to the size of contrast between two pixels p and q. This
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Figure 1: Patch shift. Conventionally, texture feature is computed in a patch centered at each pixel, in

which case the patches for two adjacent pixels should have a large overlap, reducing the feature discrim-

inability. In contrast, patch shift finds a nearby patch that stays clear of a prominent structure edge. (b)

Filtering of the scanline marked by arrows. (c) Filtered by [13]. (d) Filtered with patch shift. The results

in (b) show that our approach preserves structure edges, unlike the conventional approach.

Input I (gray), local average B (blue), and texture value G (red) Close-up of the green region

Figure 2: 1D example of guidance image computation using patch shift. The input signal is a scanline of

the Barbara image.

nonlinear weighting enables bilateral filter to blur small-scale intensity variations while preserving salient

edges.

We extend the bilateral filter by substituting a texture description image G in the range kernel g:

Jp =
1

kp

∑
q∈Ωp

f(||q − p||)g(||Gq −Gp||)Iq, (2)

This is a texture-filtering variant of Eq. (1), and its success depends heavily on the design of G, which is

also called guidance image in the context of joint bilateral filtering [14, 15].

The value of Gp can be defined by analyzing local image statistics [31, 32] in a rectangular patch Ωp

centered at p. When a patch contains both texture and structure, however, such local statistics may obscure

the existence of salient edges or region boundaries. For example, two neighboring patches (each with size

k×k) centered at two adjacent pixels p = (i, j) and q = (i, j+1), respectively, must have a large overlap



of size k × (k − 1). Consequently, these local statistics should be similar even when p and q happen to

be on the opposite sides of an edge. While Karacan et al. [13] alleviated this problem by including pixel

position in computing the region covariance, it is often not enough to guard against edge blurring (Fig. 1c).

We overcome this limitation by introducing a novel method called patch shift. Assuming a k × k box

representing a patch, each pixel p has a total of k2 patches in I that contains p. Among these k2 patches,

we find the patch Ωq that is least likely to contain a prominent structure edge. Once we have found Ωq

that has this property, we use the average intensity within this patch, denoted Bq, as the representative

texture value Gp at p in Eq. (2). In a nutshell, patch shift finds the texture patch in the neighborhood that

most likely stays clear of the structure edge (if present) and best represents the texture region that the pixel

belongs to (Fig. 1d).

There are several possible choices for defining a texture measure in such a way that it ensures separa-

tion from structure edges. In this paper, we define texture as fine-scale spatial oscillations of signals, as

in [9, 12]. Let us assume for the time being that texture signal has smaller amplitude than the neighboring

structure edge (this requirement will be lifted in Section 4), then we can simply measure the likelihood of

containing structure edge for a patch Ωq via its tonal range Δ(Ωq):

Δ(Ωq) = Imax(Ωq)− Imin(Ωq). (3)

where Imax(Ωq) and Imin(Ωq) denote the maximum and the minimum image intensities in Ωq, respec-

tively. We then let patch shift select the patch with the minimum tonal range, which is to minimize the

probability of involving a salient edge when computing texture feature.

Fig. 2 illustrates how patch shift works on a 1D signal, when tonal range is used as the texture measure.

A patch is in this case defined as an interval of width k. For every p in the input signal I , we precompute

the average intensity Bp within its own center patch Ωp. Then the texture signal Gp at p is obtained by

copying Bq at q that has the smallest Δ(Ωq) in the neighborhood of p. Note that the patch shift process

successfully flattens the (small) oscillations in texture regions without degrading the structure edges. In

case p is part of a thin texture region, there may be more than one structure edges in the neighborhood, in

which case patch shift still tries its best to stay away from the biggest edge.

4 Algorithm

Our 2D filtering process is an extension of the 1D process described above. Given an input image I , we

first apply k × k box kernel to compute the average image B. For each pixel p, we also compute the tonal

range Δ(Ωp) in Eq. (3). We then obtain the guidance image G via patch shift on each pixel. That is, we



(a) Input I (b) Blurred B (c) Guidance G (d) Guidance G′ (e) Result J

Figure 3: Overall process and intermediate images of our bilateral texture filtering.

find the patch Ωq whose Δ(Ωq) is the minimum among k2 candidates, then copy Bq to Gp. Finally we

obtain the output image J by applying joint bilateral filter on I , using G as the guidance image. While this

process generally performs well in terms of texture-structure decomposition, we make two modifications

to improve the robustness of our scheme.

Eq. (3) suggests that patch shift may not work properly if the tonal range within a pure texture region is

as large as (or larger than) the nearby structure edge. We resolve this by adapting Relative Total Variation

(RTV) [12]. We define modified Relative Total Variation (mRTV) as

mRTV(Ωq) = Δ(Ωq)

max
r∈Ωq

|(∂I)r|∑
r∈Ωq

|(∂I)r|+ ε
, (4)

where |(∂I)r| denotes the gradient magnitude at pixel r ∈ Ωq and ε is a small value to avoid division by

zero. In our implementation, we use |(∂I)r| =
√

(∂xI)2r + (∂yI)2r and ε = 10−9. The tonal range Δ(Ωq)

serves as a scale factor in Eq. (4) to reflect the absolute magnitude of the signal.

The mRTV value is relatively large in a structure patch containing only a few edges, and relatively

small in a texture patch having frequent oscillations. For a k × k 2D patch,
mRTV(Ωq)
Δ(Ωq)

would be approxi-

mately 1
k for a horizontal or vertical step edge, and 1

k2
for a texture patch with full oscillations. Note that

this is true even when the texture amplitudes are as large as (or larger than) the edges nearby. Therefore,

the use of mRTV enables filtering of texture with arbitrarily large magnitudes. Our modified patch shift

operation should now locate a pure texture patch among k2 candidates by finding the patch Ωq with the

minimum mRTV value. Fig. 3c shows the guidance image G obtained via mRTV-driven patch shift, which

effectively restores structure edges from the blurred image B.

The mRTV values in a smooth or flat image region tend to be very small and thus may become sensitive

to image noise. For example, in a smooth region where intensity changes gradually, small noisy peaks can

be misinterpreted as edges, resulting in a wrong Bq value being copied to Gp and thus disrupting the

gradual intensity variation. To prevent this, we examine the mRTV values of Ωp and Ωq when copying Bq

to Gp. If the two mRTV values are similar (meaning similar local statistics), Bp is preferred over Bq as the



(a) Input (b) [9] (c) [12] (d) [13] (e) Our method

Figure 4: Comparison with previous methods on “Pompeii Fish Mosaic”. Previous methods, (b)-(d), went

through careful manual parameter tuning. Parameters: [9] (k = 13), [12] (λ = 0.015, σ = 6), [13]

(k = 19, σ = 0.2, Model 1), and our method (k = 7, nitr = 5). Input image courtesy Chris Beckett.

value of Gp. If and only if mRTV(Ωq) is considerably smaller than mRTV(Ωp) (meaning Ωq is obviously

more flat or homogeneous), Bq is used for Gp.

This strategy can be implemented by interpolating images B and G using the difference in mRTV

values as blending weight. That is,

G′
p = αpGp + (1− αp)Bp, (5)

where

αp = 2

(
1

1 + exp(−σα(mRTV(Ωp)− mRTV(Ωq)))
− 0.5

)
. (6)

The weight αp ∈ [0, 1] is small inside smooth/texture regions, and large around edges. In Eq. (6), σα

controls the sharpness of the weight transition from edges to smooth/texture regions, where a bigger σα

means sharper transition. We use σα = 5k in our experiments. The interpolated image G′ is the modified

guidance image (Fig. 3d) that we finally use in our joint bilateral filtering of Eq. (2).

For image denoising, a single iteration of bilateral filtering is often sufficient. However, texture may

have spatial and/or range scales that are much bigger than that of noise. Therefore, depending on the input,

more than one (usually 3 ∼ 5) iterations of bilateral texture filtering might be necessary to obtain a desired

effect.

5 Results

Comparison with state-of-the-art In Fig. 4, we compare our method with the state-of-the-art nonlinear

image smoothing techniques that were specifically designed to perform texture removal [9, 12, 13]. In

generating results for these techniques, we used the implementations provided online by the authors and



Figure 5: More results of bilateral texture filtering. (top) Input images. (bottom) Our filtering results. (left

to right) Input image courtesy flickr users YoTuT, Lawrence Rice, Alexander Kauschanski, and bixentro.

fine tuned the parameters manually. All the methods we tested generally succeeded in extracting promi-

nent image structure while filtering out texture. As pointed out in [12, 13], however, we noticed that the

method of Subr et al. [9] often degrades image structures and exhibits blur artifacts, due to the difficulty

of locating extrema in regions containing the mixture of texture and structure (Fig. 4b). The method of Xu

et al. [12] shows a robust performance in both texture removal and structure preservation/enhancement.

As a byproduct of global optimization, however, oversmoothing of details may occur, which obscures the

surface shading and makes the resulting image look somewhat flat. It also appears to be difficult with

this method to eliminate texture located near a structure edge, possibly due to their strong edge preser-

vation property (Fig. 4c). The covariance-based method proposed by Karacan et al. [13] removes texture

effectively while preserving edges and surface shading, but may oversmooth structure due to the inherent

limitation of covariance descriptor in locating edges (Fig. 4d). On the other hand, our method consistently

preserves both structure and shading information without leaving unprocessed texture (Fig. 4e). The sup-

plementary material contains more comparisons using other input images. Fig. 5 shows additional results

of our bilateral texture filtering.

6 Discussion

Our bilateral texture filter retains the simplicity of the original bilateral filter, yet provides significantly

enhanced performance in separating texture details from image structures. We expect this simplicity,

efficiency, and effectiveness to open up interesting application possibilities. The proposed patch shift

mechanism plays a key role in our method as it finds appropriate texture/smooth patch for each pixel that

is needed to generate a guidance image. Patch shift is a general concept and does not depend on any

specific definition of texture feature. Therefore, its usefulness and applicability could be further explored



in a larger context of research on image processing.
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