Chapter 1
Program Design

Lecturer:
Nichman
Kittiphattanabawon

Students:
MIT Year 1

August 21, 2014
Outline

Contents

1 Problems, Algorithms, and Programs 2

2 Steps in Program Development 2

3 Introduction to Algorithms 3

4 Pseudocode 5
 4.1 What Is Pseudocode? 5
 4.2 How to Write Pseudocode? 5

5 Flowchart 9
 5.1 What is Flowchart? 9
 5.2 How to Write Flowchart? 9

6 The Structure Theorem 10
Objectives

After completing this lesson, students will be able to:

- Describe the steps in the program development process.
- Introduce algorithms, pseudocode and flowchart
- Define the three basic control structures
- Illustrate the three basic control structure using pseudocode and flowchart

1 Problems, Algorithms, and Programs

Problems
- A task to be performed
- A function of inputs to outputs

Algorithms
- A method/process followed to solve a problem
- A recipe for solving a problem whose steps are concrete and unambiguous

Programs
- A computer program of an algorithm in some programming language
- An instantiation of an algorithm in a computer programming language

The situation of problems, algorithms, and programs
- Any problem there are many possible algorithms
- Any algorithm there are many possible programs

2 Steps in Program Development

- Seven basic steps in the development of a program
 1. Define the problem
 2. Outline the solution
 3. Develop the outline into an algorithm
 4. Test the algorithm for correctness
 5. Code the algorithm into a specific programming language
 6. Run the program on the computer
 7. Document and maintain the program
3 Introduction to Algorithms

Introduction to Algorithms

Algorithm

A program must be systematically and properly designed before coding begins.

- An algorithm is like a recipe.
 - Lists of steps involved in accomplishing a task.
 * unambiguous instructions
 * ordered instructions

Definition of an algorithm in programming terms

- A set of detailed and ordered instructions developed to describe the processes necessary to produce the desired *output* from a given *input*

e.g., Algorithm of adding up a list of prices on a pocket calculator

1. Turn on calculator
2. Clear calculator

3. Repeat the following instructions
 - Key in baht amount
 - Key in decimal point (.)
 - Key in satangs amount
 - Press addition (+) key

4. Until all prices have been entered

5. Write down total price

6. Turn off calculator

Popular ways of representing algorithms

- Pseudocode
- Flowchart
- Nassi-Schneiderman diagrams
4 Pseudocode

4.1 What Is Pseudocode?

Pseudocode

What Is Pseudocode?

Pseudocode is easy to read and write

-Structured English
 -Formalised and abbreviated to look like high-level computer language

-No standard pseudocode
 -Depend on author styles
 e.g.,
 -Simple English
 -One line per each instruction
 -Top to bottom with one entry and one exit
 -Indentation
 -Keywords
 -Groups of statements

4.2 How to Write Pseudocode?

Pseudocode

How to Write Pseudocode?

Six basic computer operations

1. A computer can receive information
2. A computer can put out information
3. A computer can perform arithmetic
4. A computer can assign a value to a variable or memory location
5. A computer can compare two variables and select one of two alternate actions
6. A computer can repeat a group of actions

1. A computer can receive information
 The computer is required to receive information

- Get
 -When the algorithm is to receive input from the keyboard.
e.g.,
* Get student_id
* Get height, weight

• Read
 – When the algorithm is to receive input from a record on a file
 e.g.,
 * Read student_name
 * Read subject1, subject2, subject3

2. A computer can put out information

The computer is required to supply information or output to a device

• Print
 – When the output is to be sent to a printer
 e.g.,
 * Print “Happy Birthday to You”

• Write
 – When the output is to be written to a file
 e.g.,
 * Write student record to master file

• Put, Output or Display
 – When the output is to be written to the screen
 e.g.,
 * Put student_id, student_name
 * Output GPA
 * Display “You got A”

• Prompt
 – When the algorithm is to send a message to the screen, which requires the user to respond
 – Usually used before Get
 e.g.,
 * Prompt student_mark
 * Get student_mark
3. A computer can perform arithmetic

The computer is required to perform some sort of mathematical calculation, or formula

- **Compute** or **Calculate**
 - When the algorithm is to perform a calculation

- **+, -, *, /, ()** (actual mathematical symbols) or **Add, Subtract, Multiply, Divide** (the words)

 e.g.,
 * total = total + quiz1 (or **Add** quiz1 to total)
 * **Compute** C = (F-32)*5/9
 * **Calculate** triangle_area = 1/2*base*height

4. A computer can assign a value to a variable or memory location

- **Initialize** or **Set**
 - When giving data an initial value

 e.g.,
 * **Initialize** total to zero
 * **Set** student_count to 0

- **=** or **←**
 - When assigning a value as a result of some processing

 e.g.,
 * total = cost+tax
 * score ← midterm+final

- **Save** or **Store**
 - When keeping a variable for later use

 e.g.,
 * **Save** customer_id in last_customer_id
 * **Store** student_id in last_student_id

5. A computer can compare two variables and select one of two alternate actions

The computer is required to compare two variables

Then select one of two alternate actions
• IF
 – When establishing the comparison of data

• THEN
 – When determining the first choice of alternatives

• ELSE
 – When determining the second choice of alternatives

 e.g.,
 \[
 \text{IF } \text{score} > 49 \text{ THEN} \\
 \text{Display “PASS”} \\
 \text{ELSE} \\
 \text{Display “FAIL”}
 \]

6. A computer can repeat a group of actions

The computer is required to repeat a sequence of processing steps

• DOWHILE
 – When establishing the condition for the repetition of a group of actions

• ENDDO
 – A delimiter of DOWHILE
 – As soon as the condition for the repetition is found false, control passes to the next statement after the ENDDO

 e.g.,
 \[
 \text{DOWHILE student_total} \geq 30 \\
 \text{Read student record} \\
 \text{Print student_id, student_name, GPA to report} \\
 \text{student_total} = \text{student_total} + 1
 \text{ENDDO}
 \]
5 Flowchart

5.1 What is Flowchart?

Flowchart

What is Flowchart?

Flowcharts are an alternative method of representation algorithms

- Flowcharts are popular
 - Graphically represent the program logic
 - Easy to learn

5.2 How to Write Flowchart?

Flowchart

How to Write Flowchart?

Six standard flowchart symbols

- Terminal symbol
 - The starting or stopping point in the logic
- Input/Output symbol
 - An input or output process
 * Reading input
 * Writing output
• Process symbol
 – A single process
 • Assigning a value
 • Performing a calculation

• Predefined process symbol
 – A module
 • A predefined process that has its own flowchart

• Decision symbol
 – A decision in the logic
 • Comparison of two values
 • Alternative paths (true or false)

• Flowlines
 – Connection of symbols
 • Top to bottom
 • Left to Right

6 The Structure Theorem

A structured framework for representing a solution algorithm

• Three basic control structures
Figure 6: Sequence structure.

1. Sequence
2. Selection
3. Repetition

Sequence
- Straightforward execution of one processing step after another
 - statement a
 - statement b
 - statement c
- Represents the first four basic computer operations
 - Receive information
 - Put out information
 - Perform arithmetic
 - Assign values

Selection
- Presentation of a condition and the choice between two actions
 - The choice depending on whether the condition is true or false
- Represents the decision-making abilities of the computer
- Illustrates the fifth basic computer operation
 - Compare two variables and select one of two alternate actions

Repetition
- Presentation of a set of instruction to be performed repeatedly
As long as the condition is true

- Block statement is executed again and again until a terminating condition occurs
- Illustrates the sixth basic computer operation to repeat a group of actions.
 - Repeat a group of actions.

Summary

Summary

- Seven steps in program development
 1. Define the problem
 2. Outline the solution
 3. Develop an algorithm
 4. Test the algorithm
 5. Code
6. Run the program
7. Document and maintain

- An algorithm is a set of detailed, unambiguous and ordered instructions developed to describe the process necessary to produce the desired output from the given input.
- Pseudocode is an English-like way of representing the algorithm.
- A flowchart is a graphical representation of program logics, using a series of standard geometric symbols and lines.

- Six basic computer operations
 1. Receive information
 2. Put out information
 3. Perform arithmetic
 4. Assign a value to a variable
 5. Decide between two alternate actions
 6. Repeat a group of actions

- The Structure Theorem: Three basic control structures
 1. Sequence
 2. Selection
 3. Repetition

- Each control structure associates with each of the six basic computer operations

Outlook

- Developing an algorithm
References

Sources of Pictures

