
1 

 

Interactive Exploded-View Generation for Medical Volume Data 

 

Dongsoo Kang1, Byeong-Seok Shin2 

 
1,2Inha University, 256 Yonghyun-Dong, Nam-Gu, Inchon, KOREA 

 

 

Abstract 

 

Exploded-view generation is illustration technique to display the volumetric data for a selected region 

by cut-away specific parts. These parts are displaced to reveal hidden object in detail. Exploded-view 

is widely used in immersive surgical simulations or 3D anatomy atlas production. Previous methods 

change the direction of rays in ray traversal with pre-computed 3D transformation filters, or generate 

images in pixel shader by dividing the entire volume of data into several parts and applying rotation 

and translation transformation to individual blocks. Even though a renderer can generate the resulting 

image in real-time, the entire procedure may not be done in real-time since it takes a long time to 

classify interesting parts from the input volume. In addition, a 3D filter kernel must be created for 

deformation in the preprocessing step whenever the opacity transfer function changes. We show that 

divide the image after determining the interesting parts with a block-based structure, and to render a 

scene with the transformed segments. The entire process is performed in real-time with Computer 

Unified Device Architecture (CUDA). We present the volume ray-casting for exploded view which 

can interactive rendering. 
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1. Introduction 
 

In recent years, generating a cut-away display to observe specific regions of volume data has become 

an interesting research issue. There are two major types of methods: volume deformation and 

exploded-view generation. 

Volume deformation creates a deformed image by modifying the direction of rays in the ray traversal 

step [1, 2]. A 3D deformation filter, which has the same size of the original volume data, should be 

made in the preprocessing stage to change the ray direction. Every voxel in the 3D filter contains a 

vector that deforms each ray in a specific direction. However, it is very hard to manipulate a large 

volume dataset with the limited memory of a graphic hardware, since it should create a 3D volume 

texture having the same size as the original volume data. Also, it is difficult to support various types of 

deformation in real-time, since it takes much time to make the 3D filter. If we make several 

deformation kernels in the pre-processing step, we must update a kernel texture whenever deformation 

condition is changed by user. It causes performance degradation. 

Exploded view is an illustration technique in which an object is partitioned into several segments. It 

moves the segments in specific directions to specific position and renders those segments with GPU [3, 

4]. However, it also takes a lot of time to segment and to place those segments as the number of 

segments increases. Therefore, it is hard to perform the entire procedure in real time. To solve this 

problem, we propose real-time volume decomposition and rendering method that can divide and 

replace volume segments and generate a cut-away view with rotation and translation transformation. 

We also exploit a block-based volume subdivision method using a fragment shader. Each sub-volume 

has an arbitrary non-rectilinear shape such as block. It improves rendering speed since it does not 

consider ray-casting for complicatedly arranged volumes. Our method can easily calculate the order of 

the incident for sub-volumes. Because, the exploded view is purpose to just separate interesting 

objects. It basically is not allows that volume subdivision is overlapped. 

In Section 2, an overview of related researches is presented. We explain block-based interactive 

exploded-view generation in detail and show experimental results. Finally, we conclude our work. 

 

2. Related Works 
 

Cutting away some parts of the volume to reveal internal structures is quite common in volume 

visualization. Almost all volume renderer features simple clipping operation. Wang introduces volume 

sculpting as a flexible approach for exploring volume data [5]. Konrad-Verse uses a deformable 

cutting plane for virtual resection [6]. The work of Dietrich consists of clipping tools for the 

examination of medical volume data [7]. Owada presents a system for modeling and illustrating 

volumetric objects using artificial cutting textures based on surface models [8]. Chen introduces the 

concept of spatial transfer functions as a theoretical technique for modeling deformations in 
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volumetric data sets [9]. Islam extends this work using discontinuities to split volume data [10]. The 

interactive system presented by Singh allows manual editing of volume deformations based on a 

skeleton [11]. They extend Islam’s work by introducing selective rendering of components for 

improved visualization. Exploded-views have been investigated in the context of architectural 

visualization by Niedauer [12]. McGuffin et al. are the first to thoroughly investigate the use of 

exploded-views for volume visualization [13]. Their approach features several widgets for the 

interactive browsing of volume data partitioned into several layers. 

Most of the conventional CPU-based multi-volume rendering methods were an off-line rendering due 

to limited computing power [14]. However, it guarantees real-time rendering through cache-coherence, 

multi-threading etc [15, 16, 17]. Also, most of the recent volume rendering methods are developed for 

GPU since it supports branch instructions and powerful float point operation. Especially, the depth 

peeling method in multi-volume rendering can make a result as a complex scene implemented with a 

GPU-based method [18]. Recently multi-volume rendering has been combined with depth and 

dynamic shader generation into a very efficient framework [19]. 

 

3. Interactive Exploded-view generation 

 

For real-time processing, we propose a block-based exploded-view generation method that segments 

interesting regions without preprocessing and performs cut-away operation. To implement fast GPU-

based ray-casting algorithm for exploded view, we use CUDA with parallel mechanism [20]. It 

segments a volume data in real-time. CUDA is a parallel processing architecture using a GPU and it 

can process as many data sets as a user wants, using millions of concurrent threads. In order to 

generate an exploded view we need to specify interesting objects. So, we exploit a block-based 

rendering method for efficient volume cut-away. Each block has an arbitrary non-rectilinear shape and 

can be created and merged each other. Furthermore, we support empty space skipping and early ray 

termination. It assumes that we have geometry enclosing the visible volume under the current transfer 

function for interesting object or none. 

The overall procedure of proposed method is shown in figure 1. It transfers volume data to a GPU’s 

memory to perform ray-casting for segmented sub-volumes. Then it creates geometry of sub-volumes 

according to the size of each sub-volume and makes 3D textures for empty-space leaping and early ray 

termination. A pixel shader stores images of all sub-volumes to cast rays into the frame buffer. The 

order of ray-casting is determined by the depth values of the center of blocks bounding those sub-

volumes. It produces images according to the ordering priority, and those images are written in a 2D 

texture back-to-front order. Our method provides the translation and rotation of sub-volumes and cut-

away operations. Also, it is possible to perform real-time volume re-segmentation as much as a user 

wants. 



4 

 

 
Fig. 1. Rendering procedure of our method 

 

3.1 Volume cutting on CUDA 

 

The CUDA hardware model has a set of SIMD multiprocessors. Each processing element has a small 

amount of local shared memory, a constant cache, a texture cache and a set of processors. At any given 

clock, every processor in the multiprocessor executes the same instruction. For example, the NVIDIA 

Geforce GTX260 is comprised of 24 multiprocessors. Each processing element has 8 streaming 

processors for a total of 128 processors. In CUDA, the GPU is a computing device that can execute a 

large number of threads concurrently. The batch of threads is organized as a grid of thread blocks. A 

thread block is a group of threads that synchronize and efficiently share data thorough local shared 

memory. 

 

 
Fig. 2. Procedure of region cutting on CUDA 

 

We implement all steps in CUDA and therefore have access to all intermediate results of the pipeline, 

which are kept in shared memory wherever possible for maximum performance. In a CUDA processor, 

input data from the CPU consists of four cutting parameters representing the cutting condition – start 

position such as width, height, depth to divide original volume data. The cut-away procedure is as 
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follows. Firstly, we input the start position of volume data in modeling coordinates. We get four cut-

away parameters through a user interface. These are transferred to a GPU with original volume data. 

Next, we divide an original volume with CUDA (Fig.2). To store a segmented sub-volume, we have to 

allocate memory containing the interesting part. Then, we use as many threads as the number of voxels 

of all volume data for parallel processing, and each thread is executed when a specific thread is 

allocated in the voxel of the interesting part. To identify an interesting object, we apply a plane 

equation and the coverage mask for identifying a volume boundary. In an interesting part, none 

interesting parts set to ‘0’. It is performed on CUDA using simply the coverage make algorithm. That 

is, if a voxel is not included in an interesting part, it is stored as ‘0’ in the relevant sub-volume data 

memory. The interesting part is actually visible part from the cropped area. Then, if specific voxel 

obtain a masking value of ‘0’, this voxel value is changed to ‘0’. Accordingly, ‘0’ voxels are not 

considered in rendering. In this paper, we perform cut-away operation for arbitrary cropped area which 

includes any straight line or plane. 

 

3.2 Force-feedback configuration 

 

Force-feedback arranges sub-volumes such as the nodes of a graph by translating the layout 

requirements specified by users into physical forces. A simple setup exploits repulsive forces between 

all sub-volumes and attractive forces between sub-volumes connected with an edge. The 

corresponding node positions constitute the layout. 

We want to arrange three-dimensional objects in such a way that they reveal another object, but with 

as little displacement as possible. We want to achieve a steady state where the attractive forces and the 

repulsive forces are in equilibrium. For this reason we need to define a number of forces based on our 

requirements. 

We generate a force that drives the specific part away from the selected object. Our method is to 

generate force field which describes the characteristics of our selected object. The selected object 

affects every other sub-volume with distance-based force. It is repulsive force value after it is divided 

by the value of the distance from center point of original node to center point of current node. We 

assume that each sub-volume is a node in octree hierarchy. Each node stores a center position. Each 

node generates direction vector from center position of upper level node to current node. After 

normalizing with the distance, we set the value to normal vector of each node. This vector is a 

criterion to move each sub-volume. It is a repulsive force. Also, we can control using coefficient Cr 

that the sub-volume move how far from the selected object. The Cr is weight value for direction vector. 

Repulsive force (Fr) =    
|||||||| r

r
r

Cr ´                         (1) 

In interactive system, we must consider that the user want to rotate or zoom in/out. For this reason we 



6 

 

exploit view force which attempts to arrange sub-volumes. In general, previous illustration-based 

applications have a static view mostly. The application with static view does not need to consider the 

force-feedback. Although static view is simple to implement, it is not suitable to analyze complicated 

objects. Therefore, it is difficult to distribute the objects for detailed observation since preview 

applications engage the fixed view. To solve this problem, we implemented application that is 

appropriate to dynamic view. So, we consider an interactive force-feedback along observing direction 

since it is driven by user. This technique can solve the problem that specific objects occlude earlier 

object in the current view. For each sub-volume, we calculate a direction vector using distance from 

view plane and angle. This vector is used to calculate viewing force of sub-volumes. It is generated by 

center of sub-volume and view point in 3D coordinates. Then, it is normalized. Also, this normal 

vector is a criterion of coefficients (Cv) with distance. We can move the object to not occluded viewing 

position with the Cv. The smaller the Cv, the farther from initial location along viewing direction. 

Viewing force (Fv) =   
|||||||| r

r
r

Cv ´                         (2) 

The scaling factor of repulsive force and viewing force are scaled with the degree-of force-feedback 

parameter. Additionally, the total force vector can be modified such as user’s control or increase 

spacing. 

 

3.2 Force-feedback configuration 

 

The conventional multi-volume rendering method consists of three steps: (1) depth of the target object 

is calculated, (2) segmented volumes are assigned a drawing order and sorted, (3) ray-casting is 

performed in the sorted order immediately. Exploded-view generation does not consider the overlap of 

each volume since it aims to generate a detail unfolding view of the input volume. Therefore, we 

present a re-rendering method to visualize sub-volumes avoiding unnecessary calculations and 

accelerate rendering performance. Basically, our method uses a GPU ray-casting method [10]. The 

entire processor is as follows. First, we calculate several parameters in CUDA such as width, height, 

and depth after segmentation of the original volume data. We transfer these parameters to a vertex 

shader. These parameters are used to scale a unit-block of a single voxel. Through a scaling operation, 

each scaled block is used as proxy geometry to perform ray-casting. Generated proxy geometry is 

useful to perform empty space skipping and early ray termination in a fragment shader. It speeds up 

rendering performance, since we can control the number of compositing operations. Then the pixel 

shader applies ray-casting to store images of all sub-volumes into the frame buffer. The order of ray-

casting is determined by the depth values and center position of blocks bounding sub-volumes. We 

calculate a distance from the center of the sub-volume to the camera position in real-time. This value 

is the priority number of several sub-volumes. We produce results for each sub-volume according to 
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the priority, and those images are written in a 2D texture with back-to-front order. Our method 

provides translation and rotation of sub-volumes and cut-away operations. Also, it is possible to re-

segment the volume in real time as much as the user wants. 

 

4. Experimental Results 

 

The resulting method allows a user to easily configure a number of sub-volumes within a volume 

dataset. Our method is implemented on a NVIDIA GTX 260 with 512 MB video memory. We used 

DirectX 9.0 and CUDA 2.0. The viewport size is 1024×1024. We used the Big Head volume dataset, 

specific ultrasound datasets. We evaluated the speed of the cut away operation and rendering. 

Table 1 shows the rendering speed of our CUDA-based exploded view generation method. We test for 

several cases that had different numbers of sub-volumes and resolutions (Table 1).  
 
Table 1. Data type and comparison of rendering performance 
 

Case # Resolution of 
segmented volumes 

Sub-volume 
# 

original 
volume 

Cutting  
+ Data transfer 

Rendering 
time 

Case 1 128×128×128 4 O 71ms 44fps 
Case 2 128×128×128 8 O 185ms 26fps 

 
Case 3 

64×256×56 
64×256×256 

128×256×256 
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X 

 
50ms 

 
68fps 

Case 4 256×256×256 4 X 75ms 63fps 
 

Figure 3 depict the resulting images of the proposed exploded-view generation method with the Big 

Head dataset. In case 1, the original volume is divided into four sub-volumes. In case 2, the original 

volume is divided into eight pieces. Cut away and time for data transfer to the GPU is 71ms. Overall 

rendering time is about 23ms. The experiment is classified into four cases. Two render sub-volumes 

with original volume data (case 1, 2) and two sub-volumes without original volume data (case 3, 4). 

We can show that the cutting operation and data transfer time is quite small (Table 2). It is a set of 

common public–domain data for testing medical imaging. And we measure the overhead of our 

exploded-view rendering. The results of this comparison are given in table 2. The data resolutions are 

256×256×256. We can see that our approach have the frame rate drops linearly according to the 

number of sub-volumes and performance for a single volume object is almost identical. 

 
Table 2. Performance comparison as number of sub-volume 
 

number of sub-volume frame/second number of sub volumes frame/ second 
1 63 8 35 
2 58 16 26 
4 44 32 23 
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Fig. 3. Result image using our exploded -view; Case 1 is a result image produced by our method using 

4 sub-volumes and original volume data. Case 2 is an image produced by our method using 8 sub-

volumes and original volume data. Case 3 is resulting image of our method using just 3 sub-volumes. 

And Case 4 is an image produced by our method using just 4 sub-volumes. 

 
 

5. Conclusions 

 

We presented an exploded-view generation method that can be used to unfold the volume data in real-

time using a block-based segmentation method that can operate on CUDA. Previous exploded-view 

generation methods cannot be performed in real-time due to view-dependent volume deformation and 

long processing time.  

Our method supports real-time processing since it does not require preprocessing and provides high-

quality images, because it exploits GPU-based volume ray-casting. At present, it cannot yet support 

bending and peeling types of volume deformation. In order to solve the problem, we will focus on 

volume rendering methods using a vertex shader. Finally, we will devise a hybrid method using both 

the currently proposed method and the volume rendering method operating on a vertex shader 
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