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Objective

 Provide interactive rendering method of ultrasound 

data

 using projection of point primitives on vertex shader

 Compared with using pixel shader

 including both coordinates conversion and 3Dfiltering

 Conical coordinates to Cartesian coordinates

 Reducing speckle noise with digital filtering operators
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Issues of Ultrasound Data Visualization

 Coordinates conversion

 Ultrasound use conical coordinates rather than Cartesian coordinates

 We have to convert those coordinates during rendering stage

 Filtering for removing noise and uninterested region

 We have to reduce  uninterested region such as noise and speckles

 Lots of filtering methods have been proposed

 Usually time-consuming task

 We provide real-time 3D filtering using vertex shader



 Image order approach

view plane

calculate color of the pixel

Pros. Good quality, easily extended from acceleration technique

Cons. Performance (overhead on fragment shader)

volume data

view

Image vs. Object order approach
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 Object order approach

view plane

volume data

view

Image vs. Object order approach

calculate contribution to the image

Pros. Operation(projection, blending..) is directly supported by H/W

Cons. Image quality (difference between image space and object space)
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Main Algorithm

 Ultrasound data visualization

 Object-order approach

 1 thread per vertex

Steps:

1. Create point list

2. View transform with ultrasound 

coordinates conversion

3. 3D filtering on point list

4. View plane projection
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Overall pipeline
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Projection of Point Primitive
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Previous programmable GPU

• performed sequentially

• from vertex to fragment shader

Recent GPU architecture

• possible to perform until 

middle phase, geometry shader



Projection of Point Primitive

 Validation check
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Projection of Point Primitive
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Point CLOD

• reduce hole

• use screen space error (ε), 

distance of points (I)

ε = I / d2



Projection of Point Primitive
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Point CLOD

• vertex splitting to transit 

upper level

• supply additional point set to 

fill hole



Coordinates conversion
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For each fragment,

view-space position(αk)

• compute by intersecting the viewing ray

passing through projection position(Pk)
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Rendering stage (previous)
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1 thread(per pixel):

several sampling point x operations

indexing using OTF

Coordinates conversion

shading

color composition

3D filtering (very difficult)



Rendering stage (OURs)
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1 thread(per vertex):

1 vertex(sampling point) x operations

indexing using OTF

Coordinates conversion

3D filtering, also

shading

color composition



Rendering stage (OURs)

 Contributions

 balancing between fragment and vertex shader

 Real-time 3D filtering & coordinates conversion

 No need pre-processing

 No needs additional data structure

 for speed up(empty skipping, early ray termination)

 we remove non-interest vertex on the vertex creation stage
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Experimental Results
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Environment

 Intel Core2Duo Processor 6400(2.13GHz)

 4 GB main memory

 NVIDIA GTX260 (512 MB video memory)

 DirectX 10.0

 Shader version 4.0

 HLSL (high level shading language)

 Viewport: 512x512
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Experimental Results

 Ultrasound volume data

 Phantom, fetus data

 Clinical data from Medison Co. LTD.

 Performance (rendering speed)

CASE #
GPU-based 

RC

RC with 3D 

filtering

Projection of 

point primitive

PPP with 3D 

filtering

Phantom

256 x 128 x 110
183 fps 6 fps 32 fps 24 fps

Fetus

384 x 208 x 96
165 fps 5 fps 30 fps 17 fps

 Ray-casting with 3D filtering is time consuming task

 Fast 3D filtering is possible in our method
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Experimental Results

 Performance (filtering speed)

Data

Rendering only
Rendering and filtering

(average)

Rendering and filtering

(Gaussian)

Ray-casting PPP 3x3x3 5x5x5 3x3x3 5x5x5

Phantom 183 fps 34 fps 24 fps 10 fps 24 fps 10 fps

Fetus 165 fps 30 fps 17 fps 7 fps 17 fps 7 fps

 no difference of filtering time between average and Gaussian kernel
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Experimental Results

 result images

None 3D filtering

3x3x3 avg. filtering 5x5x5 avg. filtering 3x3x3 Gau. filtering 5x5x5 Gau. filtering
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Experimental Results

 result images

3x3x3 avg. filtering 5x5x5 avg. filtering 3x3x3 Gau. filtering 5x5x5 Gau. filtering

None 3D filtering

 3x3x3 average filter is better than other filter

(speed & quality) 



Experimental Results

 movie clip
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Conclusion

 Previous GPU-based rendering method is performed on 

fragment shader

 requires high computational cost

 hard to performing 3D filtering calculation in real-time

 Ultrasound visualization method

 convert volume coordinates into ultrasound coordinates

 remove noise with execution 3D filtering during rendering step
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Thanks for your attention

GKMIP 2011


