
12/10/2014 1

Medical Visualization

- for Ultrasonic Data -

Byeong-Seok Shin

Media Lab. INHA Univ. KOREA

12/10/2014 2

Contents

 Objective

 Issues of Ultrasound Data Visualization

 Image order approach vs. Object order approach

 Main Algorithm

 Overall pipeline of proposed rendering method

 Projection of Point Primitives

 Coordinates conversion & 3D filtering using Shaders

 Experimental Results

 Conclusion

12/10/2014 3

Objective

 Provide interactive rendering method of ultrasound

data

 using projection of point primitives on vertex shader

 Compared with using pixel shader

 including both coordinates conversion and 3Dfiltering

 Conical coordinates to Cartesian coordinates

 Reducing speckle noise with digital filtering operators

12/10/2014 4

Issues of Ultrasound Data Visualization

 Coordinates conversion

 Ultrasound use conical coordinates rather than Cartesian coordinates

 We have to convert those coordinates during rendering stage

 Filtering for removing noise and uninterested region

 We have to reduce uninterested region such as noise and speckles

 Lots of filtering methods have been proposed

 Usually time-consuming task

 We provide real-time 3D filtering using vertex shader

 Image order approach

view plane

calculate color of the pixel

Pros. Good quality, easily extended from acceleration technique

Cons. Performance (overhead on fragment shader)

volume data

view

Image vs. Object order approach

12/10/2014 5

 Object order approach

view plane

volume data

view

Image vs. Object order approach

calculate contribution to the image

Pros. Operation(projection, blending..) is directly supported by H/W

Cons. Image quality (difference between image space and object space)

12/10/2014 6

Main Algorithm

 Ultrasound data visualization

 Object-order approach

 1 thread per vertex

Steps:

1. Create point list

2. View transform with ultrasound

coordinates conversion

3. 3D filtering on point list

4. View plane projection

12/10/2014 7

Overall pipeline

12/10/2014 8

Projection of Point Primitive

12/10/2014 9

Previous programmable GPU

• performed sequentially

• from vertex to fragment shader

Recent GPU architecture

• possible to perform until

middle phase, geometry shader

Projection of Point Primitive

 Validation check

12/10/2014 10

Projection of Point Primitive

12/10/2014 11

Point CLOD

• reduce hole

• use screen space error (ε),

distance of points (I)

ε = I / d2

Projection of Point Primitive

12/10/2014 12

Point CLOD

• vertex splitting to transit

upper level

• supply additional point set to

fill hole

Coordinates conversion

12/10/2014 13

For each fragment,

view-space position(αk)

• compute by intersecting the viewing ray

passing through projection position(Pk)

bRxr

R

x

z

y

azyR





























22

1

1

22

tan
2

tan
2







Rendering stage (previous)

12/10/2014 14

1 thread(per pixel):

several sampling point x operations

indexing using OTF

Coordinates conversion

shading

color composition

3D filtering (very difficult)

Rendering stage (OURs)

12/10/2014 15

1 thread(per vertex):

1 vertex(sampling point) x operations

indexing using OTF

Coordinates conversion

3D filtering, also

shading

color composition

Rendering stage (OURs)

 Contributions

 balancing between fragment and vertex shader

 Real-time 3D filtering & coordinates conversion

 No need pre-processing

 No needs additional data structure

 for speed up(empty skipping, early ray termination)

 we remove non-interest vertex on the vertex creation stage

12/10/2014 16

12/10/2014 Media Lab. Inha Univ. 17

Experimental Results

12/10/2014 18

Environment

 Intel Core2Duo Processor 6400(2.13GHz)

 4 GB main memory

 NVIDIA GTX260 (512 MB video memory)

 DirectX 10.0

 Shader version 4.0

 HLSL (high level shading language)

 Viewport: 512x512

12/10/2014 19

Experimental Results

 Ultrasound volume data

 Phantom, fetus data

 Clinical data from Medison Co. LTD.

 Performance (rendering speed)

CASE #
GPU-based

RC

RC with 3D

filtering

Projection of

point primitive

PPP with 3D

filtering

Phantom

256 x 128 x 110
183 fps 6 fps 32 fps 24 fps

Fetus

384 x 208 x 96
165 fps 5 fps 30 fps 17 fps

 Ray-casting with 3D filtering is time consuming task

 Fast 3D filtering is possible in our method

12/10/2014 20

Experimental Results

 Performance (filtering speed)

Data

Rendering only
Rendering and filtering

(average)

Rendering and filtering

(Gaussian)

Ray-casting PPP 3x3x3 5x5x5 3x3x3 5x5x5

Phantom 183 fps 34 fps 24 fps 10 fps 24 fps 10 fps

Fetus 165 fps 30 fps 17 fps 7 fps 17 fps 7 fps

 no difference of filtering time between average and Gaussian kernel

12/10/2014 21

Experimental Results

 result images

None 3D filtering

3x3x3 avg. filtering 5x5x5 avg. filtering 3x3x3 Gau. filtering 5x5x5 Gau. filtering

12/10/2014 22

Experimental Results

 result images

3x3x3 avg. filtering 5x5x5 avg. filtering 3x3x3 Gau. filtering 5x5x5 Gau. filtering

None 3D filtering

 3x3x3 average filter is better than other filter

(speed & quality)

Experimental Results

 movie clip

12/10/2014 23

Conclusion

 Previous GPU-based rendering method is performed on

fragment shader

 requires high computational cost

 hard to performing 3D filtering calculation in real-time

 Ultrasound visualization method

 convert volume coordinates into ultrasound coordinates

 remove noise with execution 3D filtering during rendering step

12/10/2014 24

12/10/2014 25

Thanks for your attention

GKMIP 2011

