
12/10/2014 1

Medical Visualization

- for Ultrasonic Data -

Byeong-Seok Shin

Media Lab. INHA Univ. KOREA

12/10/2014 2

Contents

 Objective

 Issues of Ultrasound Data Visualization

 Image order approach vs. Object order approach

 Main Algorithm

 Overall pipeline of proposed rendering method

 Projection of Point Primitives

 Coordinates conversion & 3D filtering using Shaders

 Experimental Results

 Conclusion

12/10/2014 3

Objective

 Provide interactive rendering method of ultrasound

data

 using projection of point primitives on vertex shader

 Compared with using pixel shader

 including both coordinates conversion and 3Dfiltering

 Conical coordinates to Cartesian coordinates

 Reducing speckle noise with digital filtering operators

12/10/2014 4

Issues of Ultrasound Data Visualization

 Coordinates conversion

 Ultrasound use conical coordinates rather than Cartesian coordinates

 We have to convert those coordinates during rendering stage

 Filtering for removing noise and uninterested region

 We have to reduce uninterested region such as noise and speckles

 Lots of filtering methods have been proposed

 Usually time-consuming task

 We provide real-time 3D filtering using vertex shader

 Image order approach

view plane

calculate color of the pixel

Pros. Good quality, easily extended from acceleration technique

Cons. Performance (overhead on fragment shader)

volume data

view

Image vs. Object order approach

12/10/2014 5

 Object order approach

view plane

volume data

view

Image vs. Object order approach

calculate contribution to the image

Pros. Operation(projection, blending..) is directly supported by H/W

Cons. Image quality (difference between image space and object space)

12/10/2014 6

Main Algorithm

 Ultrasound data visualization

 Object-order approach

 1 thread per vertex

Steps:

1. Create point list

2. View transform with ultrasound

coordinates conversion

3. 3D filtering on point list

4. View plane projection

12/10/2014 7

Overall pipeline

12/10/2014 8

Projection of Point Primitive

12/10/2014 9

Previous programmable GPU

• performed sequentially

• from vertex to fragment shader

Recent GPU architecture

• possible to perform until

middle phase, geometry shader

Projection of Point Primitive

 Validation check

12/10/2014 10

Projection of Point Primitive

12/10/2014 11

Point CLOD

• reduce hole

• use screen space error (ε),

distance of points (I)

ε = I / d2

Projection of Point Primitive

12/10/2014 12

Point CLOD

• vertex splitting to transit

upper level

• supply additional point set to

fill hole

Coordinates conversion

12/10/2014 13

For each fragment,

view-space position(αk)

• compute by intersecting the viewing ray

passing through projection position(Pk)

bRxr

R

x

z

y

azyR

22

1

1

22

tan
2

tan
2

Rendering stage (previous)

12/10/2014 14

1 thread(per pixel):

several sampling point x operations

indexing using OTF

Coordinates conversion

shading

color composition

3D filtering (very difficult)

Rendering stage (OURs)

12/10/2014 15

1 thread(per vertex):

1 vertex(sampling point) x operations

indexing using OTF

Coordinates conversion

3D filtering, also

shading

color composition

Rendering stage (OURs)

 Contributions

 balancing between fragment and vertex shader

 Real-time 3D filtering & coordinates conversion

 No need pre-processing

 No needs additional data structure

 for speed up(empty skipping, early ray termination)

 we remove non-interest vertex on the vertex creation stage

12/10/2014 16

12/10/2014 Media Lab. Inha Univ. 17

Experimental Results

12/10/2014 18

Environment

 Intel Core2Duo Processor 6400(2.13GHz)

 4 GB main memory

 NVIDIA GTX260 (512 MB video memory)

 DirectX 10.0

 Shader version 4.0

 HLSL (high level shading language)

 Viewport: 512x512

12/10/2014 19

Experimental Results

 Ultrasound volume data

 Phantom, fetus data

 Clinical data from Medison Co. LTD.

 Performance (rendering speed)

CASE #
GPU-based

RC

RC with 3D

filtering

Projection of

point primitive

PPP with 3D

filtering

Phantom

256 x 128 x 110
183 fps 6 fps 32 fps 24 fps

Fetus

384 x 208 x 96
165 fps 5 fps 30 fps 17 fps

 Ray-casting with 3D filtering is time consuming task

 Fast 3D filtering is possible in our method

12/10/2014 20

Experimental Results

 Performance (filtering speed)

Data

Rendering only
Rendering and filtering

(average)

Rendering and filtering

(Gaussian)

Ray-casting PPP 3x3x3 5x5x5 3x3x3 5x5x5

Phantom 183 fps 34 fps 24 fps 10 fps 24 fps 10 fps

Fetus 165 fps 30 fps 17 fps 7 fps 17 fps 7 fps

 no difference of filtering time between average and Gaussian kernel

12/10/2014 21

Experimental Results

 result images

None 3D filtering

3x3x3 avg. filtering 5x5x5 avg. filtering 3x3x3 Gau. filtering 5x5x5 Gau. filtering

12/10/2014 22

Experimental Results

 result images

3x3x3 avg. filtering 5x5x5 avg. filtering 3x3x3 Gau. filtering 5x5x5 Gau. filtering

None 3D filtering

 3x3x3 average filter is better than other filter

(speed & quality)

Experimental Results

 movie clip

12/10/2014 23

Conclusion

 Previous GPU-based rendering method is performed on

fragment shader

 requires high computational cost

 hard to performing 3D filtering calculation in real-time

 Ultrasound visualization method

 convert volume coordinates into ultrasound coordinates

 remove noise with execution 3D filtering during rendering step

12/10/2014 24

12/10/2014 25

Thanks for your attention

GKMIP 2011

