New Graph Model and Algorithms
for Consistent Superstring Problems

Joong Chae Na

Sejong University

Joint work with S.H. Cho, S. Choi, J.W. Kim, K. Park
and J.S. Sim

Outline

Introduction and background
Problem Definition

New Graph Model
Algorithms

Conclusion

String

String

Sequence of characters over an alphabet X

alphabet X : a set of characters in strings
Ex) ASCII, {0,1}, {A,C,G, T}

Examples
DNA sequences over X = {A4,C,G,T}
Binary sequences over X = {0, 1}
abaab over X = {a, b}

Substring and Superstring

Substring of a string x
String that is included in x
EX) aa is a substring of x = baab
substrings of x : {4, a, b, aa, ab, ba, bb, aab, baa, baab }

Superstring of a string x
String that includes x as a substring
Ex) baab is a superstring of x = aa
superstrings of x : {aa, aaa, aab, aba, abb, baa, aaaa, ...}

Common Substring

Input: string set P = {x;,x,, ..., x,} over X

Common substring of P
String that is included in every string x;
Ex) P = {ababbabb, bbabaaba} over X = {a, b}
Common substrings of P
{A,a,b,ab, ba,bb,aba, bab, bba,bbab}

Longest common substring problem
Solvable in polynomial time

Common Superstring

Input: string set P = {x;,x,, ..., x,} over X

Common superstring of P
String that includes every string x; as a substring
Ex) P = {ab, bb} over X = {a, b}
Common superstrings of P
{abb,aabb,abba,abbb, babb, bbab, baabb, ... }

Shortest common superstring problem
NP-hard

Common Non-Substring

Input: string set N = {y;,y,, ..., y,} over X

Common non-substring of N
String that isn't included in any string y;
Ex) N = {abb, baba} over X = {a, b}
Common non-substrings of N

{aa,aaa,aab, baa, bba, bbb, aaaa, aaab, aaba,aabb, abaa, ... }

Shortest common non-substring problem
Solvable in polynomial time

Common Non-Superstring

Input: string set N = {y;,y,, ..., y,} over X

Common non-superstring of N
String that does not include any string y; as a substring
Ex) N = {aaa, aba, bba, bbb} over X = {a, b}

Common non-superstrings of N
{A,a,b,aa,ab,ba,bb,aab,abb, baa, bab,
aabb, baab, babb, baabb}

Longest common non-superstring problem
Solvable in polynomial time

INnclusion or Non-Inclusion

(Longest) common substrings

(Shortest) common superstrings (NP-hard)
(Shortest) common non-substrings
(Longest) common non-superstrings

Applications
Data compression, molecular biology, computer security

INnclusion and Non-Inclusion
1|

[]
o (Shortest) common superstrings (NP-hard)
[]

o (Longest) common non-superstrings

~ Problem considering both inclusion and non-inclusion
= Consistent Superstring

n Problem Definition

Consistent Superstring

Input: Positive string set P = {x3, x,, ..., x, } and negative

string set N = {y;,y5, ..., y,} over X

Consistent superstring (CSS) of P and N

String that is both @ common superstring of P and a common non-
superstring of N

Applications: DNA sequencing, data compression, security

Example of Consistent Superstrings

L]
P = {ab,bb}, N = {aaa,aba,bba, bbb} over £ = {a, b}

The set of common non-superstrings of N
{A,a,b,aa,ab,ba,bb,aab,abb, baa, bab,
aabb, baab, babb, baabb}

The set of common superstrings of P:
{aab, aabb,abba, abbb, babb, bbab,
baabb, ...}

The set of consistent superstrings of P and N: {aab, aabb, babb, baabb}

. =
L i

%

o

-

.
ﬁ%

-

-
-
-
-
Ez%i,

i
-

-
-
¢

e
i -

-
o
-
-
-
-
-

_— .

- e
e
-

-
-
-
-
-

.
-
-
-
-
.
.
-
.
.
.
.

.
L
-
-
-
-
.
.
.
-

-
-

”
-
.
-
-
:***
:***
:***
e
.
-

<
c

-
.

-
-
-
-
-
-
-
-
-
-
.
-
-

.
.

L

-
-
.

.
o
-
-
-
.
.
-
.
.
.
.
.

.

. common non-

-
-
-

ST
common .. .
- .
s

-
-
-
.
-
-
-
-
-
-
-
-

-
-
.
;*g
-
-
-
-
-
-
-

.
superstrings of P < . superstrings of N
<

-
-
L g%ziﬁﬁmé@@

.
.

E*i:
-

-
-
-
-
-
-

-

-
-

.
-
-

-
-

-
-
£

S

-

-

o

o

L

i
-
.

-
.

*

i

consistent superstrings
of Pand N

CSS Problems

INnput: positive string set P = {x,, x,, ..., Xp} and negative string set

N ={y4,y5, ..., Yo} OVer ¥

1. Shortest Consistent Superstring (SCSS) Problem

Output: If €SS = @, 'No SCSS exists.'
otherwise, an SCSS of P and N

>. Longest Consistent Superstring (LCSS) Problem

Output: If €SS = @ or an arbitrarily long CSS can be made,
'No LCSS exists.'
otherwise, an LCSS of P and N

Assumptions

P = {xy,x,, ...,xp} and N = {y{,v,, ..., Y}
For all x; and x; (i # j), x; is not a substring of x;. (If x; is a
substring of x;, then any superstring of x; is a superstring of
x;. Hence, we can remove x; from P.)

For all y; and y; (i # j), y; is not a substring of y;. (Otherwise,

we can remove y; from N.)

For all x; and y;, y; is not a substring of x;. (Otherwise, no
CSS exists.)

For all x; and y;, x; is not a substring of y;. (inclusion-free)

Previous Work

Jiang-Li (1994) introduced the notion of CSS in the

context of learning strings (DNA sequencing, etc.)

Jiang-Timkovsky (1995)
Used a graph model based only on the strings in N

Assumed non-trivial conditions

Proposed polynomial time algorithms for finding SCSS and LCSS

when |P| is bounded by a constant

Contributions

New graph model

Based on the Aho-Corasick automaton using all the strings in P and N
Does not assume non-trivial conditions

Is more intuitive and leads to simpler algorithms than Jiang-Timkovsky’s

Improved algorithms for SCSS and LCSS problems

Our algorithms solve the CSS problems for more cases and/or more

efficiently.

n New Graph Model

Graph Model

Our graph model is related to Aho-Corasick (AC) automaton

for multiple pattern matching.

The AC automaton consists of vertices (states) and three
functions (transitions): goto function, failure function, output

function.

The AC automaton has its DFA version.

AC Automaton for {aa, aba, abba, bb}
KN

{aa}

{aba}

» Goto function @% *

e Failure function

* Qutput function b »
(o)

O(aa) = {v;}

O(abba) = {vs} b a
aooa Vg
O(aba) = {vs} {abba}
@ e

Q(bb) ={vs, v,}

DFA Version of AC Automaton
En

Oaa) = {v;}
O(abba) = {vs}
Qaba) = {vs}
Q(bb) = {vs, v/}

AC Automaton

Finding all occurrences of
pattern strings in a text
string.

text sting:

b

AC Automaton

Finding all occurrences of
pattern strings in a text
string.

text sting:

ba

AC Automaton

Finding all occurrences of
pattern strings in a text
string.

text sting:

haa

AC Automaton

Finding all occurrences of
pattern strings in a text
string.

text sting:

baab

AC Automaton

Finding all occurrences of
pattern strings in a text
string.

text sting:

b@b_b

AC Automaton

Finding all occurrences of
pattern strings in a text
string.

text sting:

b@ﬁ?a

Our Graph Model P ={aba,bb}N = {aa, abba}
KN
Build AC automaton for P U N

Oaa) = {vs}
Q(abba) = {vg}
O(aba) = {vs}
Q(bb) = {vs, v7}

Our Graph Model P ={aba,bb},N = {aa,abba}
L&]

Remove all negative output states

Oaa) = {v;}
Q(abba) = {vs}

GCSS

We call this graph G ¢

g-vertex

/
Olaba) = {v}

Q(bb) ={vs, v,}

P = {aba,bb},N = {aa, abba}

GC‘SS P ={aba,bb},N = {aa, abba}

A-path: a path from v,

A-path(a): a path from v,
representing string o

o 1ISACNSS of N &
A-path(a) exists in G

ex) abbb is a common
non-superstring of N

longest CNSS of N exists
< G4 IS acyclic

GC‘SS P ={aba,bb},N = {aa, abba}

Q-path: a A-path which passes at least one vertex in Q(x;) for every
X; € P
Q(aba) - {Vg}

o 1Sa CSS of Pand N
< A-path(a) that is a
Q-path exists in G

eX) ababb is a consistent
superstring of P and N

O(bb) ={vs, v/}

n Improved Algorithms

Algorithm for CSS
e 5

1. Construct G,ss.

>. Find shortest (longest) Q-path in G.gs.
Compute SCSS (LCSS) if shortest (longest) Q-path is found in step 2.

3.

P U N i1s Inclusion-free

|Q(x;)| = 1 for every positive string x;
Case G.ss is acyclic
If a Q-path exists, g-vertices must be in a path.

Such a Q-path can be found by depth-first search
(topological sort).

..

P U N i1s Inclusion-free

Case G s Is cyclic

Build G5 :
vertices: v, and all g-vertices of G s

Edge (u, v) is defined if there is a path from u to v in G.s5 and
its weight is the length of shortest path from u to v in G s

P U N i1s Inclusion-free

Case G s Is cyclic

Shortest Q-path in G.gs is shortest path A in G5 that

starts at v, and passes over all vertices (SCSS is
reduced to TSP)

If Gos is acyclic, A; must pass over all vertices of Gy in
topological order

P U N 1s not inclusion-free

Build G5 from Gess

Shortest Q-path in G¢gs is shortest path in G, that
starts at v, and passes over at least one vertex in every
Q(x;) (SCSS is reduced to Generalized TSP)

ababb 1S SCSS

Shortest CSS

LCNSS of No LCNSS of N exists
Algorithms Cases .
N exists G s is acyclic G s is cyclic
JT95 IF & final closure | O(p? + pN?)t O(pN? + p22p)t
IF
Ql | oe+N) |om®+N) |omP® + N) +p22v)
Ours

~QI O(k(P + N) + k22p)

" 0(P) is required since O(P + N) is the input size.
k is the number of all g-vertices.

Even though P U N is not inclusion-free, |Q(x;)| can be 1 for every
positive string x;. In this case (Q1) we use the algorithm for case P U N
is inclusion-free.

Algorithm for LCSS
I T

1. Construct G,ss.
>. Find longest Q-path in G.gs.
Compute LCSS if longest Q-path is found in step 2.

3.

P U N i1s Inclusion-free

Case G s is acyclic: similar to SCSS
Case G s is cyclic
Build G, :

vertices: vy, all g-vertices of G.ss, and v,

Edge (u,v) for u,v # v, is defined if there is a path from u to v
in Gogs and its weight is —1 multiplied by the length of longest
path from u to v in Ggg

Edge (u, v) is always defined and its weight is —1 multiplied by
the length of longest path from u to any vertex in G g

P U N i1s Inclusion-free

Longest Q-path in G¢gs is shortest path in G, that starts at v, and
passes over all vertices. (G, is acyclic or not)

(b)

(a) G¢ss and (b) Gg, for P = {baa, bba} and N = {ab, bbb}
Arbitrarily long CSS bbaaaa ...

P U N 1s not inclusion-free

Build G, from Gcss

Longest Q-path in G is shortest path in G, that starts
at v,, and passes over at least one vertex in every Q(x;),
and ends at v, (LCSS is reduced to Generalized TSP)

Longest CSS

Algorithms Cases LCNSS of N exists No LCNSS of N exists
JT95 IF & final closure O(p? + pN?) i
IF
QI O(P + N) O(p(P + N)?)
Ours
~IF
~Q1 O(k(P + N)? + k?2p)

k is the number of all g-vertices.

Conclusion

Simple and intuitive graph model for CSS problems
based on Aho-Corasick automaton

Q-paths have a one-to-one correspondence with CSSs.

Leads to improved algorithms for SCSS and LCSS
problems.

= 0

Thank You

