
New Graph Model and Algorithms
for Consistent Superstring Problems

Joong Chae Na

Sejong University

Joint work with S.H. Cho, S. Choi, J.W. Kim, K. Park
and J.S. Sim

Outline

 Introduction and background

 Problem Definition

 New Graph Model

 Algorithms

 Conclusion

2

Introduction and Background3

String
4

 String
 Sequence of characters over an alphabet Σ

 alphabet Σ : a set of characters in strings
 Ex) ASCII, 0, 1 , , , ,

 Examples
 DNA sequences over Σ , , ,
 Binary sequences over Σ 0, 1
 over Σ ,

Substring and Superstring
5

 Substring of a string
 String that is included in

 Ex) is a substring of

substrings of : , , , , , , , ,

 Superstring of a string 	
 String that includes as a substring

 Ex) is a superstring of 	
superstrings of : , , , , , , , …

,	baab }

Common Substring

 Input: string set , , … , over Σ

 Common substring of
 String that is included in every string

 Ex) , over Σ ,
 Common substrings of

, , , , , , , , ,

 Longest common substring problem
 Solvable in polynomial time

6

Common Superstring

 Input: string set , , … , over Σ

 Common superstring of
 String that includes every string as a substring

 Ex) , over Σ ,
 Common superstrings of

, , , , , , , …

 Shortest common superstring problem
 NP-hard

7

Common Non-Substring

 Input: string set , , … , over Σ

 Common non-substring of
 String that isn't included in any string

 Ex) , over Σ ,
 Common non-substrings of

, , , , , , , , , , , …

 Shortest common non-substring problem
 Solvable in polynomial time

8

Common Non-Superstring

 Input: string set , , … , over Σ

 Common non-superstring of
 String that does not include any string as a substring

 Ex) , , , over Σ ,
 Common non-superstrings of

, , , , , , , , , , ,	
, , ,

 Longest common non-superstring problem
 Solvable in polynomial time

9

Inclusion or Non-Inclusion
10

 (Longest) common substrings

 (Shortest) common superstrings (NP-hard)

 (Shortest) common non-substrings

 (Longest) common non-superstrings

 Applications
 Data compression, molecular biology, computer security

Inclusion and Non-Inclusion
11

 (Longest) common substrings

 (Shortest) common superstrings (NP-hard)

 Shortest common non-substrings

 (Longest) common non-superstrings

 Problem considering both inclusion and non-inclusion
 Consistent Superstring

Problem Definition12

Consistent Superstring

 Input: Positive string set , , … , and negative

string set , , … , over Σ

 Consistent superstring (CSS) of and

 String that is both a common superstring of and a common non-
superstring of

 Applications: DNA sequencing, data compression, security

13

Example of Consistent Superstrings

, , , , , over Σ ,

The set of consistent superstrings of and : , , ,

The set of common non-superstrings of :
, , , , , , , , , , ,	

, , ,

The set of common superstrings of :
, , , , , ,	

, …
∩

common non-
superstrings of

common
superstrings of

consistent superstrings
of and

14

CSS Problems

Input: positive string set , , … , and negative string set

, , … , over Σ

1. Shortest Consistent Superstring (SCSS) Problem

Output: If ∅, 'No SCSS exists.'

otherwise, an SCSS of and

2. Longest Consistent Superstring (LCSS) Problem

Output: If ∅ or an arbitrarily long CSS can be made,

'No LCSS exists.'

otherwise, an LCSS of and

15

Assumptions

 , , … , and , , … ,

1) For all and (), is not a substring of . (If is a

substring of , then any superstring of is a superstring of

. Hence, we can remove from .)

2) For all and (), is not a substring of . (Otherwise,

we can remove from .)

3) For all and , is not a substring of . (Otherwise, no

CSS exists.)

4) For all and , is not a substring of . (inclusion-free)

16

Previous Work

 Jiang-Li (1994) introduced the notion of CSS in the

context of learning strings (DNA sequencing, etc.)

 Jiang-Timkovsky (1995)

 Used a graph model based only on the strings in

 Assumed non-trivial conditions

 Proposed polynomial time algorithms for finding SCSS and LCSS

when | | is bounded by a constant

17

Contributions

 New graph model

 Based on the Aho-Corasick automaton using all the strings in and

 Does not assume non-trivial conditions

 Is more intuitive and leads to simpler algorithms than Jiang-Timkovsky’s

 Improved algorithms for SCSS and LCSS problems

 Our algorithms solve the CSS problems for more cases and/or more

efficiently.

18

New Graph Model19

Graph Model

 Our graph model is related to Aho-Corasick (AC) automaton

for multiple pattern matching.

 The AC automaton consists of vertices (states) and three

functions (transitions): goto function, failure function, output

function.

 The AC automaton has its DFA version.

20

AC Automaton for {aa, aba, abba, bb}

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

{aba}

{abba}

{bb}

{aa}

• Goto function

• Failure function

• Output function

Q(aa) = {v3}

Q(abba) = {v8}

Q(aba) = {v6}

Q(bb) = {v5, v7}

21

DFA Version of AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Q(aba) = {v6}

Q(abba) = {v8}

Q(bb) = {v5, v7}

Q(aa) = {v3}

22

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

text sting:

baabba

23

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

24

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

v3

25

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

v3

26

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v6

v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

v3

v7

27

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

28

Build AC automaton for ∪

Our Graph Model

v0 v1 v3

v4 v6

v7 v8

v2 v5

a a

b

b

a

b a

b

a

b

aa

b

b

aa

b

b

, , ,

{aba}

{abba}

{bb}

{aa}

Q(aa) = {v3}

Q(abba) = {v8}

Q(aba) = {v6}

Q(bb) = {v5, v7}

29

Remove all negative output states

Our Graph Model

v0 v1 v3

v4 v6

v7 v8

v2 v5

a a

b

b

a

b a

b

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Q(abba) = {v8}

Q(aa) = {v3}

, , ,

30

We call this graph

GCSS

v0 v1

v4 v6

v7

v2 v5

a

b

b

a

b

b
b

aa

b

b

Q(aba) = {v6}

Q(bb) = {v5, v7}

, , ,

q-vertex

31

GCSS

v0 v1

v4 v6

v7

v2 v5

a

b

b

a

b

b
b

aa

b

b
ex) abbb is a common
non-superstring of

λ-path: a path from v0

α is a CNSS of N ⇔
λ-path(α) exists in GCSS

λ-path(α): a path from v0
representing string α

, , ,

longest CNSS of N exists
⇔ GCSS is acyclic

32

Q-path: a λ-path which passes at least one vertex in for every
∈

GCSS

v0 v1

v4 v6

v7

v2 v5

a

b

b

a

b

b
b

aa

b

b

Q(bb) = {v5, v7}

Q(aba) = {v6}

ex) ababb is a consistent
superstring of P and N

α is a CSS of P and N
⇔ λ-path(α) that is a
Q-path exists in GCSS

, , ,

33

Improved Algorithms34

Algorithm for CSS

1. Construct .
2. Find shortest (longest) Q-path in .

3. Compute SCSS (LCSS) if shortest (longest) Q-path is found in step 2.

v0

b
a

a
b

b

b

a

b

35

is inclusion-free

 1 for every positive string

 Case is acyclic

 If a Q-path exists, q-vertices must be in a path.

 Such a Q-path can be found by depth-first search
(topological sort).

v0 . . .u1 u2 ur

36

is inclusion-free

 Case is cyclic

 Build :
 vertices: and all q-vertices of

 Edge , is defined if there is a path from to in and
its weight is the length of shortest path from to in

v0
3

2

v6

v7

v5

2
4

3

3 3
3 1

37

is inclusion-free

 Case is cyclic

 Shortest Q-path in is shortest path in that
starts at and passes over all vertices (SCSS is
reduced to TSP)

 If is acyclic, must pass over all vertices of in
topological order

38

is not inclusion-free

 Build from

 Shortest Q-path in is shortest path in that
starts at and passes over at least one vertex in every

(SCSS is reduced to Generalized TSP)

v0
3

2

v6

v7

v5

2
4

3

3 3
3 1

ababb is SCSS

39

Shortest CSS

 † 	is required since 	is the input size.

 is the number of all q-vertices.

 Even though ∪ is not inclusion-free, can be 1 for every
positive string . In this case (Q1) we use the algorithm for case ∪
is inclusion-free.

Algorithms Cases
LCNSS of

exists
No LCNSS of exists

is acyclic is cyclic

JT95 IF & final closure 2 2 † 2 22 †

Ours

IF
Q1 22

~IF
~Q1 22

40

Algorithm for LCSS

1. Construct .
2. Find longest Q-path in .

3. Compute LCSS if longest Q-path is found in step 2.

v0

b
a

a
b

b

b

a

b

41

is inclusion-free

 Case is acyclic: similar to SCSS

 Case is cyclic

 Build :
 vertices: , all q-vertices of , and

 Edge , for , is defined if there is a path from to
in and its weight is 1 multiplied by the length of longest
path from to in

 Edge , is always defined and its weight is 1 multiplied by
the length of longest path from to any vertex in

42

is inclusion-free

 Longest Q-path in is shortest path in that starts at and
passes over all vertices. (is acyclic or not)

v0 v1

v2 v3 v4

v5 v6

a

a
a

a a

a
ab

b

(a)

v0 v6 v4 vf

-4

-1-3 -∞

-∞
-∞

(b)

(a) and (b) for , and ,
Arbitrarily long CSS …

43

is not inclusion-free

 Build from

 Longest Q-path in is shortest path in that starts
at , and passes over at least one vertex in every ,
and ends at (LCSS is reduced to Generalized TSP)

44

Longest CSS

 is the number of all q-vertices.

Algorithms Cases LCNSS of exists No LCNSS of exists

JT95 IF & final closure 2 2 -

Ours

IF
Q1 2

~IF
~Q1 2 22

45

Conclusion

 Simple and intuitive graph model for CSS problems
based on Aho-Corasick automaton

 Q-paths have a one-to-one correspondence with CSSs.

 Leads to improved algorithms for SCSS and LCSS
problems.

46

Thank You

47

