
New Graph Model and Algorithms
for Consistent Superstring Problems

Joong Chae Na

Sejong University

Joint work with S.H. Cho, S. Choi, J.W. Kim, K. Park
and J.S. Sim

Outline

 Introduction and background

 Problem Definition

 New Graph Model

 Algorithms

 Conclusion

2

Introduction and Background3

String
4

 String
 Sequence of characters over an alphabet Σ

 alphabet Σ : a set of characters in strings
 Ex) ASCII, 0, 1 ,ܣ , ,ܥ ,ܩ ܶ

 Examples
 DNA sequences over Σ ൌ ,ܣ ,ܥ ,ܩ ܶ
 Binary sequences over Σ ൌ 0, 1
 ܾܾܽܽܽ over Σ ൌ ܽ, ܾ

Substring and Superstring
5

 Substring of a string ݔ
 String that is included in ݔ
 Ex) ܽܽ is a substring of ݔ ൌ ܾܾܽܽ

substrings of ݔ : ሼߣ, ܽ, ܾ, ܽܽ, ܾܽ, ܾܽ, ܾܾ, ܾܽܽ, ܾܽܽሽ

 Superstring of a string ݔ	
 String that includes ݔ as a substring

 Ex) ܾܾܽܽ is a superstring of ݔ ൌ 	ܽܽ
superstrings of ݔ : ሼܽܽ, ܽܽܽ, ܾܽܽ, ܾܽܽ, ܾܾܽ, ܾܽܽ, ܽܽܽܽ,… ሽ

,	baab }

Common Substring

 Input: string set ܲ ൌ ,ଵݔ ,ଶݔ … , ௣ݔ over Σ

 Common substring of ࡼ
 String that is included in every string ݔ௜
 Ex) ܲ ൌ ሼܾܾܾܾܾܽܽܽ, ܾܾܾܾܽܽܽܽሽ over Σ ൌ ሼܽ, ܾሽ
 Common substrings of ܲ

ሼߣ, ܽ, ܾ, ܾܽ, ܾܽ, ܾܾ, ܾܽܽ, ܾܾܽ, ܾܾܽ, ܾܾܾܽሽ

 Longest common substring problem
 Solvable in polynomial time

6

Common Superstring

 Input: string set ܲ ൌ ,ଵݔ ,ଶݔ … , ௣ݔ over Σ

 Common superstring of ࡼ
 String that includes every string ݔ௜ as a substring

 Ex) ܲ ൌ ሼܾܽ, ܾܾሽ over Σ ൌ ሼܽ, ܾሽ
 Common superstrings of ܲ

ሼܾܾܽ, ܾܾܽܽ, ܾܾܽܽ, ܾܾܾܽ, ܾܾܾܽ, ܾܾܾܽ, ܾܾܾܽܽ,… ሽ

 Shortest common superstring problem
 NP-hard

7

Common Non-Substring

 Input: string set ܰ ൌ ሼݕଵ, ,ଶݕ … , ௡ሽݕ over Σ

 Common non-substring of ࡺ
 String that isn't included in any string ݕ௜
 Ex) ܰ ൌ ሼܾܾܽ, ܾܾܽܽሽ over Σ ൌ ሼܽ, ܾሽ
 Common non-substrings of ܰ

ሼܽܽ, ܽܽܽ, ܾܽܽ, ܾܽܽ, ܾܾܽ, ܾܾܾ, ܽܽܽܽ, ܾܽܽܽ, ܾܽܽܽ, ܾܾܽܽ, ܾܽܽܽ, … ሽ

 Shortest common non-substring problem
 Solvable in polynomial time

8

Common Non-Superstring

 Input: string set ܰ ൌ ሼݕଵ, ,ଶݕ … , ௡ሽݕ over Σ

 Common non-superstring of ࡺ
 String that does not include any string ݕ௜ as a substring

 Ex) ܰ ൌ ሼܽܽܽ, ܾܽܽ, ܾܾܽ, ܾܾܾሽ over Σ ൌ ሼܽ, ܾሽ
 Common non-superstrings of ܰ

ሼߣ, ܽ, ܾ, ܽܽ, ܾܽ, ܾܽ, ܾܾ, ܾܽܽ, ܾܾܽ, ܾܽܽ, ܾܾܽ,	
ܾܾܽܽ, ܾܾܽܽ, ܾܾܾܽ, ܾܾܾܽܽሽ

 Longest common non-superstring problem
 Solvable in polynomial time

9

Inclusion or Non-Inclusion
10

 (Longest) common substrings

 (Shortest) common superstrings (NP-hard)

 (Shortest) common non-substrings

 (Longest) common non-superstrings

 Applications
 Data compression, molecular biology, computer security

Inclusion and Non-Inclusion
11

 (Longest) common substrings

 (Shortest) common superstrings (NP-hard)

 Shortest common non-substrings

 (Longest) common non-superstrings

 Problem considering both inclusion and non-inclusion
  Consistent Superstring

Problem Definition12

Consistent Superstring

 Input: Positive string set ܲ ൌ ,ଵݔ ,ଶݔ … , ௣ݔ and negative

string set ܰ ൌ ሼݕଵ, ,ଶݕ … , ௡ሽݕ over Σ

 Consistent superstring (CSS) of ܲ and ܰ
 String that is both a common superstring of ܲ and a common non-

superstring of ܰ

 Applications: DNA sequencing, data compression, security

13

Example of Consistent Superstrings

ܲ ൌ ܾܽ, ܾܾ , ܰ ൌ ܽܽܽ, ܾܽܽ, ܾܾܽ, ܾܾܾ over Σ ൌ ሼܽ, ܾሽ

The set of consistent superstrings of ܲ and ܰ: ሼܾܽܽ, ܾܾܽܽ, ܾܾܾܽ, ܾܾܾܽܽሽ

The set of common non-superstrings of ܰ:
ሼߣ, ܽ, ܾ, ܽܽ, ܾܽ, ܾܽ, ܾܾ, ܾܽܽ, ܾܾܽ, ܾܽܽ, ܾܾܽ,	

ܾܾܽܽ, ܾܾܽܽ, ܾܾܾܽ, ܾܾܾܽܽሽ

The set of common superstrings of ܲ:
ሼܾܽܽ, ܾܾܽܽ, ܾܾܽܽ, ܾܾܾܽ, ܾܾܾܽ, ܾܾܾܽ,	

ܾܾܾܽܽ, … ሽ
∩

common non-
superstrings of ܰ

common
superstrings of ܲ

consistent superstrings
of ܲ and ܰ

14

CSS Problems

Input: positive string set ܲ ൌ ሼݔଵ, ,ଶݔ … , ௣ሽݔ and negative string set

ܰ ൌ ሼݕଵ, ,ଶݕ … , ௡ሽݕ over Σ

1. Shortest Consistent Superstring (SCSS) Problem

Output: If ܵܵܥ ൌ ∅, 'No SCSS exists.'

otherwise, an SCSS of ܲ and ܰ

2. Longest Consistent Superstring (LCSS) Problem

Output: If ܵܵܥ ൌ ∅ or an arbitrarily long CSS can be made,

'No LCSS exists.'

otherwise, an LCSS of ܲ and ܰ

15

Assumptions

 ܲ ൌ ,ଵݔ ,ଶݔ … , ௣ݔ and ܰ ൌ ሼݕଵ, ,ଶݕ … , ௡ሽݕ

1) For all ݔ௜ and ݔ௝ (݅ ് ௜ݔ ,(݆ is not a substring of ݔ௝. (If ݔ௜ is a

substring of ݔ௝, then any superstring of ݔ௝ is a superstring of

௜ݔ ௜. Hence, we can removeݔ from ܲ.)

2) For all ݕ௜ and ݕ௝ (݅ ് ௜ݕ ,(݆ is not a substring of ݕ௝. (Otherwise,

we can remove ݕ௝ from ܰ.)

3) For all ݔ௜ and ݕ௝, ݕ௝ is not a substring of ݔ௜. (Otherwise, no

CSS exists.)

4) For all ݔ௜ and ݕ௝, ݔ௜ is not a substring of ݕ௝. (inclusion-free)

16

Previous Work

 Jiang-Li (1994) introduced the notion of CSS in the

context of learning strings (DNA sequencing, etc.)

 Jiang-Timkovsky (1995)

 Used a graph model based only on the strings in ܰ

 Assumed non-trivial conditions

 Proposed polynomial time algorithms for finding SCSS and LCSS

when |ܲ| is bounded by a constant

17

Contributions

 New graph model

 Based on the Aho-Corasick automaton using all the strings in ܲ and ܰ

 Does not assume non-trivial conditions

 Is more intuitive and leads to simpler algorithms than Jiang-Timkovsky’s

 Improved algorithms for SCSS and LCSS problems

 Our algorithms solve the CSS problems for more cases and/or more

efficiently.

18

New Graph Model19

Graph Model

 Our graph model is related to Aho-Corasick (AC) automaton

for multiple pattern matching.

 The AC automaton consists of vertices (states) and three

functions (transitions): goto function, failure function, output

function.

 The AC automaton has its DFA version.

20

AC Automaton for {aa, aba, abba, bb}

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

{aba}

{abba}

{bb}

{aa}

• Goto function

• Failure function

• Output function

Q(aa) = {v3}

Q(abba) = {v8}

Q(aba) = {v6}

Q(bb) = {v5, v7}

21

DFA Version of AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Q(aba) = {v6}

Q(abba) = {v8}

Q(bb) = {v5, v7}

Q(aa) = {v3}

22

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

text sting:

baabba

23

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

24

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

v3

25

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

v3

26

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v6

v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

v3

v7

27

AC automaton accepts all pattern strings

AC Automaton

v0 v1

v4

v2

a a

b

b

a

b a

b

v3

v6

v7 v8

v5

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Finding all occurrences of
pattern strings in a text
string.

baabba
text sting:

28

Build AC automaton for ܲ ∪ ܰ

Our Graph Model

v0 v1 v3

v4 v6

v7 v8

v2 v5

a a

b

b

a

b a

b

a

b

aa

b

b

aa

b

b

ܲ ൌ ܾܽܽ, ܾܾ , ܰ ൌ ሼܽܽ, ܾܾܽܽሽ

{aba}

{abba}

{bb}

{aa}

Q(aa) = {v3}

Q(abba) = {v8}

Q(aba) = {v6}

Q(bb) = {v5, v7}

29

Remove all negative output states

Our Graph Model

v0 v1 v3

v4 v6

v7 v8

v2 v5

a a

b

b

a

b a

b

a

b

aa

b

b

aa

b

b

{aba}

{abba}

{bb}

{aa}

Q(abba) = {v8}

Q(aa) = {v3}

ܲ ൌ ܾܽܽ, ܾܾ , ܰ ൌ ሼܽܽ, ܾܾܽܽሽ

30

We call this graph ܩ஼ௌௌ

GCSS

v0 v1

v4 v6

v7

v2 v5

a

b

b

a

b

b
b

aa

b

b

Q(aba) = {v6}

Q(bb) = {v5, v7}

ܲ ൌ ܾܽܽ, ܾܾ , ܰ ൌ ሼܽܽ, ܾܾܽܽሽ

q-vertex

31

GCSS

v0 v1

v4 v6

v7

v2 v5

a

b

b

a

b

b
b

aa

b

b
ex) abbb is a common
non-superstring of ܰ

λ-path: a path from v0

α is a CNSS of N ⇔
λ-path(α) exists in GCSS

λ-path(α): a path from v0
representing string α

ܲ ൌ ܾܽܽ, ܾܾ , ܰ ൌ ሼܽܽ, ܾܾܽܽሽ

longest CNSS of N exists
⇔ GCSS is acyclic

32

Q-path: a λ-path which passes at least one vertex in ܳሺݔ௜ሻ for every
௜ݔ ∈ ܲ

GCSS

v0 v1

v4 v6

v7

v2 v5

a

b

b

a

b

b
b

aa

b

b

Q(bb) = {v5, v7}

Q(aba) = {v6}

ex) ababb is a consistent
superstring of P and N

α is a CSS of P and N
⇔ λ-path(α) that is a
Q-path exists in GCSS

ܲ ൌ ܾܽܽ, ܾܾ , ܰ ൌ ሼܽܽ, ܾܾܽܽሽ

33

Improved Algorithms34

Algorithm for CSS

1. Construct ܩ஼ௌௌ.
2. Find shortest (longest) Q-path in ܩ஼ௌௌ.
3. Compute SCSS (LCSS) if shortest (longest) Q-path is found in step 2.

v0

b
a

a
b

b

b

a

b

35

is inclusion-free

 ܳ ௜ݔ ൌ 1 for every positive string ݔ௜
 Case ܩ஼ௌௌ is acyclic

 If a Q-path exists, q-vertices must be in a path.

 Such a Q-path can be found by depth-first search
(topological sort).

v0 . . .u1 u2 ur

36

is inclusion-free

 Case ܩ஼ௌௌ is cyclic

 Build ܩொௌ :
 vertices: ݒ଴ and all q-vertices of ܩ஼ௌௌ
 Edge ሺݑ, ሻݒ is defined if there is a path from ݑ to ݒ in ஼ௌௌܩ and

its weight is the length of shortest path from ݑ to ݒ in ஼ௌௌܩ

v0
3

2

v6

v7

v5

2
4

3

3 3
3 1

37

is inclusion-free

 Case ܩ஼ௌௌ is cyclic

 Shortest Q-path in ܩ஼ௌௌ is shortest path ܣ௦ in ொௌܩ that
starts at ݒ଴ and passes over all vertices (SCSS is
reduced to TSP)

 If ொௌܩ is acyclic, ܣ௦ must pass over all vertices of ொௌܩ in
topological order

38

is not inclusion-free

 Build ܩொௌ from ܩ஼ௌௌ
 Shortest Q-path in ܩ஼ௌௌ is shortest path in ொௌܩ that

starts at ݒ଴ and passes over at least one vertex in every
ܳ ௜ݔ (SCSS is reduced to Generalized TSP)

v0
3

2

v6

v7

v5

2
4

3

3 3
3 1

ababb is SCSS

39

Shortest CSS

 † ܱ ܲ 	is required since ܱ ܲ ൅ ܰ 	is the input size.

 ݇ is the number of all q-vertices.

 Even though ܲ ∪ ܰ is not inclusion-free, ܳ ௜ݔ can be 1 for every
positive string ݔ௜. In this case (Q1) we use the algorithm for case ܲ ∪ ܰ
is inclusion-free.

Algorithms Cases
LCNSS of
ܰ exists

No LCNSS of ܰ exists

ܵܳܩ is acyclic ܵܳܩ is cyclic

JT95 IF & final closure ܱ 2݌ ൅ 2ܰ݌ † ܱ 2ܰ݌ ൅ ݌22݌ †

Ours

IF
Q1 ܱ ܲ ൅ ܰ ܱሺ݌ ܲ ൅ ܰ ሻ ܱሺ݌ ܲ ൅ ܰ ൅ ሻ݌22݌

~IF
~Q1 ܱሺ݇ ܲ ൅ ܰ ൅ ሻ݌22݇

40

Algorithm for LCSS

1. Construct ܩ஼ௌௌ.
2. Find longest Q-path in ܩ஼ௌௌ.
3. Compute LCSS if longest Q-path is found in step 2.

v0

b
a

a
b

b

b

a

b

41

is inclusion-free

 Case ܩ஼ௌௌ is acyclic: similar to SCSS

 Case ܩ஼ௌௌ is cyclic

 Build ܩொ௅ :
 vertices: ݒ଴, all q-vertices of ܩ஼ௌௌ, and ݒ௙
 Edge ݑ, ݒ for ݑ, ݒ ് ௙ݒ is defined if there is a path from ݑ to ݒ

in ஼ௌௌܩ and its weight is െ1 multiplied by the length of longest
path from ݑ to ݒ in ஼ௌௌܩ

 Edge ሺݑ, ௙ሻݒ is always defined and its weight is െ1 multiplied by
the length of longest path from ݑ to any vertex in ஼ௌௌܩ

42

is inclusion-free

 Longest Q-path in ܩ஼ௌௌ is shortest path in ொ௅ܩ that starts at ݒ଴ and
passes over all vertices. (ܩொ௅ is acyclic or not)

v0 v1

v2 v3 v4

v5 v6

a

a
a

a a

a
ab

b

(a)

v0 v6 v4 vf

-4

-1-3 -∞

-∞
-∞

(b)

(a) ܩ஼ௌௌ and (b) ܩொ௅ for ܲ ൌ ሼܾܽܽ, ܾܾܽሽ and ܰ ൌ ሼܾܽ, ܾܾܾሽ
Arbitrarily long CSS ܾܾܽܽܽܽ…

43

is not inclusion-free

 Build ܩொ௅ from ܩ஼ௌௌ
 Longest Q-path in ܩ஼ௌௌ is shortest path in ொ௅ܩ that starts

at ݒ଴, and passes over at least one vertex in every ܳ ௜ݔ ,
and ends at ݒ௙ (LCSS is reduced to Generalized TSP)

44

Longest CSS

 ݇ is the number of all q-vertices.

Algorithms Cases LCNSS of ܰ exists No LCNSS of ܰ exists

JT95 IF & final closure ܱ 2݌ ൅ 2ܰ݌ -

Ours

IF
Q1 ܱ ܲ ൅ ܰ ܱሺ݌ ܲ ൅ ܰ 2ሻ

~IF
~Q1 ܱሺ݇ ܲ ൅ ܰ 2 ൅ ሻ݌22݇

45

Conclusion

 Simple and intuitive graph model for CSS problems
based on Aho-Corasick automaton

 Q-paths have a one-to-one correspondence with CSSs.

 Leads to improved algorithms for SCSS and LCSS
problems.

46

Thank You

47

