New Graph Model and Algorithms for Consistent Superstring Problems

> Joong Chae Na Sejong University

Joint work with S.H. Cho, S. Choi, J.W. Kim, K. Park and J.S. Sim

Outline

- Introduction and background
- Problem Definition
- New Graph Model
- Algorithms
- Conclusion

String

String

• Sequence of characters over an alphabet Σ

- alphabet Σ : a set of characters in strings
 - Ex) ASCII, {0, 1}, {*A*, *C*, *G*, *T*}
- Examples
 - DNA sequences over $\Sigma = \{A, C, G, T\}$
 - Binary sequences over $\Sigma = \{0, 1\}$
 - *abaab* over $\Sigma = \{a, b\}$

Substring and Superstring

□ **Substring** of a string *x*

- **•** String that is included in *x*
- Ex) aa is a substring of x = baab

substrings of x : { λ , a, b, aa, ab, ba, $\frac{bb}{b}$, aab, baa, baab }

□ **Superstring** of a string *x*

- String that includes x as a substring
- Ex) baab is a superstring of x = aa

superstrings of *x* : {*aa*, *aaa*, *aab*, *aba*, *abb*, *baa*, *aaaa*, ... }

Common Substring

Input: string set $P = \{x_1, x_2, ..., x_p\}$ over Σ

Common substring of P

\square String that is included in every string x_i

• Ex) $P = \{ababbabb, bbabaaba\}$ over $\Sigma = \{a, b\}$

Common substrings of P

 $\{\lambda, a, b, ab, ba, bb, aba, bab, bba, bbab\}$

Longest common substring problem

Solvable in polynomial time

Common Superstring

Input: string set $P = \{x_1, x_2, ..., x_p\}$ over Σ

Common superstring of P

- String that includes every string x_i as a substring
- Ex) $P = \{ab, bb\}$ over $\Sigma = \{a, b\}$

Common superstrings of P

{*abb*, *aabb*, *abba*, *abbb*, *babb*, *bbab*, *baabb*, ... }

Shortest common superstring problem

NP-hard

Common Non-Substring

Input: string set $N = \{y_1, y_2, ..., y_n\}$ over Σ

Common non-substring of N

- String that isn't included in any string y_i
- Ex) $N = \{abb, baba\}$ over $\Sigma = \{a, b\}$

Common non-substrings of N

 $\{aa, aaa, aab, baa, bba, bbb, aaaa, aaab, aaba, aabb, abaa, ... \}$

Shortest common non-substring problem

Solvable in polynomial time

Common Non-Superstring

Input: string set $N = \{y_1, y_2, \dots, y_n\}$ over Σ

Common non-superstring of N

- String that does not include any string y_i as a substring
- Ex) $N = \{aaa, aba, bba, bbb\}$ over $\Sigma = \{a, b\}$

Common non-superstrings of N
 {λ, a, b, aa, ab, ba, bb, aab, abb, baa, bab,
 aabb, baab, babb, baabb}

Longest common non-superstring problem

Solvable in polynomial time

Inclusion or Non-Inclusion

- (Longest) common substrings
- Shortest) common superstrings (NP-hard)
- □ (Shortest) common non-substrings
- (Longest) common non-superstrings

Applications

Data compression, molecular biology, computer security

Inclusion and Non-Inclusion

- 11
- (Longest) common substrings
- Shortest) common superstrings (NP-hard)
- Shortest common non-substrings
- Longest) common non-superstrings
- Problem considering both inclusion and non-inclusion
 - Consistent Superstring

Problem Definition

Consistent Superstring

Input: Positive string set $P = \{x_1, x_2, ..., x_p\}$ and negative string set $N = \{y_1, y_2, ..., y_n\}$ over Σ

□ **Consistent superstring** (CSS) of *P* and *N*

- String that is both a common superstring of P and a common nonsuperstring of N
- Applications: DNA sequencing, data compression, security

Example of Consistent Superstrings

 $P = \{ab, bb\}, N = \{aaa, aba, bba, bbb\}$ over $\Sigma = \{a, b\}$

The set of common superstrings of *P*: {*aab*, *aabb*, *abba*, *abbb*, *babb*, *bbab*, *baabb*, ... }

The set of common non-superstrings of N: $\{\lambda, a, b, aa, ab, ba, bb, aab, abb, baa, bab, aabb, baab, babb, baabb \}$

The set of consistent superstrings of *P* and *N*: {*aab*, *aabb*, *babb*, *baabb*}

CSS Problems

Input: positive string set $P = \{x_1, x_2, ..., x_p\}$ and negative string set

 $N = \{y_1, y_2, \dots, y_n\}$ over Σ

1. Shortest Consistent Superstring (SCSS) Problem

Output: If $CSS = \emptyset$, 'No SCSS exists.'

otherwise, an SCSS of P and N

2. Longest Consistent Superstring (LCSS) Problem

Output: If CSS = Ø or an arbitrarily long CSS can be made,
'No LCSS exists.'
otherwise, an LCSS of P and N

Assumptions

$$\square P = \{x_1, x_2, \dots, x_p\} \text{ and } N = \{y_1, y_2, \dots, y_n\}$$

- 1) For all x_i and x_j $(i \neq j)$, x_i is not a substring of x_j . (If x_i is a substring of x_j , then any superstring of x_j is a superstring of x_i . Hence, we can remove x_i from *P*.)
- 2) For all y_i and y_j ($i \neq j$), y_i is not a substring of y_j . (Otherwise, we can remove y_j from N.)
- 3) For all x_i and y_j , y_j is not a substring of x_i . (Otherwise, no CSS exists.)
- 4) For all x_i and y_j , x_i is not a substring of y_j . (inclusion-free)

Previous Work

Jiang-Li (1994) introduced the notion of CSS in the context of learning strings (DNA sequencing, etc.)

Jiang-Timkovsky (1995)

- **u** Used a graph model based only on the strings in *N*
- Assumed non-trivial conditions
- Proposed polynomial time algorithms for finding SCSS and LCSS when |P| is bounded by a constant

Contributions

New graph model

- **Based** on the Aho-Corasick automaton using all the strings in *P* and *N*
- Does not assume non-trivial conditions
- Is more intuitive and leads to simpler algorithms than Jiang-Timkovsky's

Improved algorithms for SCSS and LCSS problems

 Our algorithms solve the CSS problems for more cases and/or more efficiently.

New Graph Model

Graph Model

- Our graph model is related to Aho-Corasick (AC) automaton for multiple pattern matching.
- The AC automaton consists of vertices (states) and three functions (transitions): goto function, failure function, output function.
- □ The AC automaton has its DFA version.

AC Automaton for {aa, aba, abba, bb}

- Goto function
- Failure function
- Output function

 $Q(aa) = \{v_3\}$ $Q(abba) = \{v_8\}$ $Q(aba) = \{v_6\}$ $Q(bb) = \{v_5, v_7\}$

DFA Version of AC Automaton

23

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

24

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

25

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

26

AC automaton accepts all pattern strings

Finding all occurrences of pattern strings in a text string.

27

AC automaton accepts all pattern strings

28

AC automaton accepts all pattern strings

Our Graph Model $P = \{aba, bb\}, N = \{aa, abba\}$

29

Our Graph Model $P = \{aba, bb\}, N = \{aa, abba\}$

30

31

$$P = \{aba, bb\}, N = \{aa, abba\}$$

We call this graph G_{CSS}

G_{CSS}

32

$$P = \{aba, bb\}, N = \{aa, abba\}$$

 λ -*path*: a path from v_0

 λ -*path*(α): a path from v_0 representing string α

 α is a CNSS of $N \Leftrightarrow \lambda$ -path(α) exists in G_{CSS}

ex) *abbb* is a common non-superstring of *N*

longest CNSS of N exists $\Leftrightarrow G_{CSS}$ is acyclic

G_{CSS}

$P = \{aba, bb\}, N = \{aa, abba\}$

Q-path: a λ -path which passes at least one vertex in $Q(x_i)$ for every $x_i \in P$

 α is a CSS of *P* and *N* $\Leftrightarrow \lambda$ -*path*(α) that is a Q-path exists in *G*_{CSS}

ex) *ababb* is a consistent superstring of *P* and *N*

34 Improved Algorithms

Algorithm for CSS

35

- 1. Construct G_{CSS} .
- 2. Find shortest (longest) Q-path in G_{CSS} .
- 3. Compute SCSS (LCSS) if shortest (longest) Q-path is found in step 2.

- \square $|Q(x_i)| = 1$ for every positive string x_i
- \Box Case G_{CSS} is acyclic
- □ If a Q-path exists, q-vertices must be in a path.
- Such a Q-path can be found by depth-first search (topological sort).

- \Box Case G_{CSS} is cyclic
- \square Build G_{QS} :
 - vertices: v_0 and all q-vertices of G_{CSS}
 - Edge (u, v) is defined if there is a path from u to v in G_{CSS} and its weight is the length of shortest path from u to v in G_{CSS}

- \Box Case G_{CSS} is cyclic
- □ Shortest Q-path in G_{CSS} is shortest path A_s in G_{QS} that starts at v_0 and passes over all vertices (SCSS is reduced to TSP)
- □ If G_{QS} is acyclic, A_s must pass over all vertices of G_{QS} in topological order

- 39
- **Build** G_{QS} from G_{CSS}
- □ Shortest Q-path in G_{CSS} is shortest path in G_{QS} that starts at v_0 and passes over at least one vertex in every $Q(x_i)$ (SCSS is reduced to Generalized TSP)

Shortest CSS

	Cases		LCNSS of N exists	No LCNSS of N exists	
Algorithms				G_{QS} is acyclic	G_{QS} is cyclic
JT95	IF & final closure		$O(p^2 + pN^2)^{\dagger}$	$O(pN^2+p^22^p)^\dagger$	
Ours	IF	Q1	O(P+N)	O(p(P+N))	$O(p(P+N)+p^22^p)$
	~IF				
		~Q1	$O(k(P+N)+k^22^p)$		

- \square ⁺ O(P) is required since O(P + N) is the input size.
- \square k is the number of all q-vertices.
- □ Even though $P \cup N$ is not inclusion-free, $|Q(x_i)|$ can be 1 for every positive string x_i . In this case (Q1) we use the algorithm for case $P \cup N$ is inclusion-free.

Algorithm for LCSS

41

- 1. Construct G_{CSS} .
- 2. Find longest Q-path in G_{CSS} .
- 3. Compute LCSS if longest Q-path is found in step 2.

- \Box Case G_{CSS} is acyclic: similar to SCSS
- \Box Case G_{CSS} is cyclic
- \square Build G_{QL} :
 - vertices: v_0 , all q-vertices of G_{CSS} , and v_f
 - Edge (u, v) for $u, v \neq v_f$ is defined if there is a path from u to vin G_{CSS} and its weight is -1 multiplied by the length of longest path from u to v in G_{CSS}
 - Edge (u, v_f) is always defined and its weight is -1 multiplied by the length of longest path from u to any vertex in G_{CSS}

- 43
- □ Longest Q-path in G_{CSS} is shortest path in G_{QL} that starts at v_0 and passes over all vertices. (G_{QL} is acyclic or not)

(a) G_{CSS} and (b) G_{QL} for $P = \{baa, bba\}$ and $N = \{ab, bbb\}$ Arbitrarily long CSS $bbaaaa \dots$

- \square Build G_{QL} from G_{CSS}
- □ Longest Q-path in G_{CSS} is shortest path in G_{QL} that starts at v_0 , and passes over at least one vertex in every $Q(x_i)$, and ends at v_f (LCSS is reduced to Generalized TSP)

Longest CSS

45

Algorithms	Cases		LCNSS of N exists	No LCNSS of N exists
JT95	IF & final closure		$O(p^2 + pN^2)$	-
Ours	IF	Q1	O(P+N)	$O(p(P+N)^2)$
	~1F	~Q1	$O(k(P+N)^2 + k^2 2^p)$	

 \square k is the number of all q-vertices.

Conclusion

- Simple and intuitive graph model for CSS problems based on Aho-Corasick automaton
- Q-paths have a one-to-one correspondence with CSSs.
- Leads to improved algorithms for SCSS and LCSS problems.

47

Thank You