Teacher: Nichnan Kittiphattanabawon
LastUPD: 28 March 2016

CA01: Preliminary Investigation Overview

cted Sys	tem:		
bers: (ID	, Name)		
1			
2			
3.			

Due Date

Teacher: Nichnan Kittiphattanabawon

LastUPD: 28 March 2016

PROBLEM 1: FISHBONE DIAGRAM

During a preliminary investigation, a systems analyst typically follows a series of steps.

- 1. Understand the problem or opportunity
- 2. Define the project scope and constraint
- 3. Perform fact-finding
- 4. Study usability, cost, benefit, and schedule data
- 5. Evaluate feasibility
- 6. Present recommendations to management

To understand the problem or opportunity, you must analyze the systems request. When you investigate a systems request, you need to determine which departments, users, and business processes are involved. In many cases, the system request does not reveal the underlying problem, but only a symptom. A popular technique for investigating causes and effects is called a *fishbone diagram*, or *Ishikawa diagram*.

Draw a fishbone diagram for your systems request.

- Group: 2-3 persons
- System request: one selected system

Teacher: Nichnan Kittiphattanabawon

LastUPD: 28 March 2016

PROBLEM 2: PROJECT SCOPE

Determining the project scope means defining the specific boundaries of the project. (the same group)

- 2.1 Create a list with sections called "Must DO", Should DO", "Could Do" and "Won't Do"
 - 2 items per a section
 - Make in a tabular

No.	Scope	Must	Should	Could	Won't
	(specific and clear)	Do	Do	Do	Do
1					
2					
3					
4					
5					
6					
0					
7					
8					

Teacher: Nichnan Kittiphattanabawon

LastUPD: 28 March 2016

2.2 Identify constraints by timing, type and urgeno		2.2 Ide	entify	constraints	by	timing,	type	and	urgenc
---	--	---------	--------	-------------	----	---------	------	-----	--------

- Present vs. Future
- Internal vs. External
- Mandatory vs. Desirable

ITM-631 Information System Development, 3/2015

M.Sc. MIT Year 1 , School of Informatics, Walailak University, THAILAND

Teacher: Nichnan Kittiphattanabawon

LastUPD: 28 March 2016